دانشگاه علوم و فنون مازندران
دانشکده صنایع
ارزیابی عملکرد پالایشگاه های کشور با مدل ترکیبی تحلیل پوششی داده ها و شبکه های عصبی مصنوعی
پایان نامه جهت دریافت درجه کارشناسی ارشد
رشته صنایع ،گرایش صنایع
نام دانشجو :
سیده نجمه تختی
اساتید راهنما :
دکتر رضاییان ، دکتر تاجدین
زمستان 93
تقدیر و تشکر
به مصداق «من لم یشکر المخلوق لم یشکر الخالق » بسی شایسته است از استاد فرهیخته و فرزانه جناب آقای دکتر جواد رضاییان که با کرامتی چون خورشید ، سرزمین دل را روشنی بخشیدند و گلشن سرای علم و دانش را با راهنمایی های کار ساز و سازنده بارور ساختند ; تقدیر و تشکر نمایم.
( و یزکیهم و یعلمهم الکتاب و الحکمه )
معلما مقامت ز عرش برتر باد همیشه توسن اندیشه ات مظفر باد
به نکته های دلاویز و گفته های بلند صحیفه های سخن از تو علم پرور باد
همچنین از پدر و مادر عزیز ، دلسوز و مهربانم که آرامش روحی و آسایش فکری فراهم نمودند تا با حمایت های همه جانبه در محیطی مطلوب ، مراتب تحصیلی و نیز پایان نامه درسی را به نحو احسن به اتمام برسانم ; سپاسگزاری نمایم.
شکر خدا که هر چه طلب کردم از خدا بر منتهای همت خود کامران شدم
به پاس تعبیر عظیم و انسانی شان از کلمه ایثار و از خودگذشتگان
به پاس عاطفه سرشار و گرمای امیدبخش وجودشان که در این سردترین روزگاران بهترین پشتیبان است
به پاس قلب های بزرگشان که فریاد رس است و سرگردانی و ترس در پناهشان به شجاعت می گراید
و به پاس محبت های بی دریغشان که هرگز فروکش نمی کند.
با سپاس ازسه وجود مقدس
آنان که ناتوان شدند تا ما به توانایی برسیم…
موهایشان سپید شد تا ماروسفید شویم….
و عاشقانه سوختند تا گرمابخش وجود ما و روشنگر راهمان باشند….
پدرانمان
مادرانمان
استادانمان
چکیده :
کارایی و رتبه بندی زیرمجموعه های یک صنعت کاری ضروری است ، و لازم است حداقل سالی یکبار عملکرد آنها را برپایه اصول علمی مورد ارزیابی قرار داد.
صنعت نفت و گاز به عنوان یکی از اساسی ترین صنایع ایران از حساس ترین و مهمترین منابع درآمد دولت به شمار میرود .بدیهی است وجود کارایی در این صنعت عایدات دولت را چندین برابر مینماید و این مهم جز با ارزیابی دقیق و صحیح واحدها ی تحت پوشش میسر نمیشود .
از آنجایی که تحلیل پوششی داده ها کارایی متفاوتی در طول زمان ارائه میدهد و به هیچ پیش فرض اولیه ای درباره مرز کارایی نیاز ندارد لذا در میان تمام روشهای ارزیابی عملکرد ، DEA در سازماندهی و تحلیل داده ها بهترین روش است .بنابراین با جمع آوری اطلاعات ورودی و خروجی 6 پالایشگاه کشور کارایی آن ها را محاسبه کرده و واحدهای کارا و ناکارا شناسایی شدند.. اما DEA قادر به تفکیک کارایی همه ی پالایشگاه ها ازیکدیگرنیست . دلیل این موضوع کمبود تعداد واحدهای تصمیم گیرنده (6 پالایشگاه ) نسبت به تعداد ورودی و خروجی ها( 4 ورودی و 4 خروجی ). لذا DEA قادر به رتبه بندی کامل واحدها نیست، بنابراین از تلفیق تحلیل پوششی داده ها و شبکه عصبی مصنوعی به منظور اندازه گیری عملکرد واحدها ی تصمیم گیرنده استفاده شده است به نحوی که مشکل مذکور برطرف گردد. و در آخر مقایسه ای بین نتایج حاصل از این دو روش صورت گرفته است .
کلمات کلیدی :
کارایی ، ارزیابی عملکرد ، تحلیل پوششی داده ها ، شبکه عصبی ، پالایشگاه
فهرست مطالب
فصل اول1
کلیات تحقیق1
1-1- مقدمه2
1-2- تعریف مسأله3
1-3- اهداف اساسی از انجام تحقیق4
1-4- ضرورت انجام تحقیق4
1-5- فرضیات تحقیق5
1-6- جامعه آماری5
1-7- قلمرو تحقیق5
1-8- مراحل انجام تحقیق :5
فصل دوم7
مرور ادبیات و بررسی پیشینه ی تحقیق7
2-1- مقدمه8
2-2- تعاریف کارایی8
2-3- روش هاي اندازه گیري کارایی فنی9
2-3-1- روش هاي پارامتري9
2-3-2- روش هاي نا پارامتري9
2-4- مقایسۀ رگرسیون وتحلیل پوششی داده ها9
2-5- مفاهیم کارایی10
2-6- استفاده ازنسبت دراندازه گیري کارایی11
2-7- انواع مدل هاي پایه اي (کلاسیک) تحلیل پوششی داده ها :11
2-7-1- مدل CCR :12
2-7-2- مدل BCC17
2-7-3- مدل جمعی ( SBM= Slack Based Model )20
2-8- رتبه بندي واحد هاي کارا21
2-9- روش اندرسون – پیترسون 21
2-10- شبکه های عصبی مصنوعی ( ANNs ) 22
2-10-1- مقدمه23
2-10-2- شبکه عصبی23
2-10-3- معرفی شبکه عصبی مصنوعی24
2-10-4- تاریخچه شبکه‌های عصبی مصنوعی24
2-10-5- چرا از شبکه‌های عصبی استفاده می‌کنیم؟25
2-10-7- ساختار شبکه‌های عصبی26
2-10-8- تقسیم بندی شبکه‌های عصبی27
2-10-9- کاربرد شبکه‌های عصبی28
2-10-10- معایب شبکه‌های عصبی28
2-10-11- مسائل مناسب برای یادگیری شبکه های عصبی28
2-11- یادگیری یک پرسپترون29
2-11-1- آموزش پرسپترون31
2-11-2- الگوریتم یادگیری پرسپترون31
2-12- مقایسه آموزش یکجا و افزایشی32
2-13- شبکه های چند لایه32
2-14- الگوریتم Back propagation33
2-15- شبکه های عصبی چند لایه پیش خور37
2-16- انواع شبکه های عصبی :38
2-16-1- شبکه عصبی پرسپترون39
2-16-2- شبکه همينگ40
2-16-3- شبکه هاپفيلد41
2-16-4- شبکه عصبی خود سازمانده مدل کوهنن42
2-16-5- شبکه عصبی تأ خير زمانی42
2-17- مدل ترکیبی شبکه های عصبی مصنوعی و تحلیل پوششی داده ها (NEURO/DEA )43
2-17-1- مقدمه44
2-17-2- الگوریتم تحلیل کارایی46
2-17-3- نرمال سازی داده ها46
2-18- مفاهیم کارایی ، بهره وری و اثربخشی49
2-19- مروری بر مطالعات انجام شده50
فصل سوم62
روش تحقیق62
3-1- مقدمه63
3-2- روش تحقیق63
3-3- جامعه آماری64
3-4- شیوه گردآوری اطلاعات64
3-5- مراحل انجام تحقیق64
3-6- شیوه نرمال سازی65
3-7- ارزیابی و تحلیل کارایی فنی پالایشگاه های گاز کشور با رویکرد تحلیل پوششی داده ها (DEA )65
3-7-1- مدل سازی ریاضی66
3-7-2- مدل مضربی CCR ورودی محور66
3-7-3- روش اندرسون – پیترسون بر ای رتبه بندی واحدهای کارا67
3-8- دلایل استفاده از مدل مضربی CCR ورودی محور در مقایسه با مدل BCC67
3-9- روش تحقیق مورد استفاده در تحلیل کارایی با مدل های ترکیبی Neuro/DEA68
3-9-1- مدل مورد استفاده در تحقیق69
3-9-2- روش به کار گرفته شده در مدل های ترکیبی Neuro/DEA1 و Neuro/DEA2 جهت ارزیابی واحد ها70
فصل چهارم71
نتایج و تفسیر آن ها71
4-1- مقدمه72
4-2- نرمالیز کردن داده ها73
4-3- الگوریتم پس انتشار77
4-4- شبکه پیش سو 78
4-5- جمع آوری داده ها : Neuro – DEA78
4-6- نرمال سازی داده ها Neuro /DEA79
4-7- داده های آموزش80
4-8- داده های تست80
4-9- عملیات آموزش82
4-10- نمایش نمودارها84
فصل پنجم87
نتیجه گیری و پیشنهادات87
5-1- محدودیت های انجام تحقیق88
5-2- نتیجه گیری88
5-3- تحقیقات آتی89
منابع و مراجع90
منابع فارسی91
منابع انگلیسی93
فهرست اشکال
شکل 1-1- مقایسه رگرسیون و DEA …………………………………………………………………………………………..9
شکل 2-1- پرسپترون تک لایه ……………………………………………………………………………………………………29
شکل 2-2- پرسپترون ………………………………………………………………………………………………………………..30
شکل 2-3- توابعی که پرسپترون قادر به یادگیری آن ها می باشد …………………………………………………..30
شکل 2-4- مقایسه آموزش افزایشی و یکجا …………………………………………………………………………………..32
شکل 2-5- منحنی یادگیری …………………………………………………………………………………………………………35
شکل 2-6- نمودار خطا …………………………………………………………………………………………………………………36
شکل 2-7- شرط پایان الگوریتم BP …………………………………………………………………………………………….36
شکل 2-8- پرسپترون تک لایه ……………………………………………………………………………………………………39
شکل 2-9- پرسپترون تک لایه …………………………………………………………………………………………………..39
شکل 2-10- شبکه همینگ ………………………………………………………………………………………………………..40
شکل 2-11- شبکه هاپفیلد …………………………………………………………………………………………………………41
شکل 2-12- شبکه کوهنن……………………………………………………………………………………………………………42
شکل 2-13- ساختار نرون در شبکه TDNN ………………………………………………………………………………….43
شکل 2-14- الگوریتم تحلیل کارایی ……………………………………………………………………………………………..48
شکل 2-15- شبکه پرسپترون سه لایه ………………………………………………………………………………………….70
شکل 3-1- ورودی و خروجی های پالایشگاه ها ……………………………………………………………………………….78
شکل 4-1- تابع سیگموئیدی …………………………………………………………………………………………………………84
شکل 4-2- مقایسه خروجی های شبیه سازی شده …………………………………………………………………………..85
شکل 4-3- مقایسه خروجی ها با داده های تست ……………………………………………………………………………..86
شکل 4-4- مقایسه کارایی مدل DEA و ANN ………………………………………………………………………………..86
فهرست جدول
جدول 2-1- مدل جمعی ……………………………………………………………………………………………………….20
جدول 3-1- معرفی پالایشگاه ها ……………………………………………………………………………………………..65
جدول 3-2- مشخصه های متغیرهای تصمیم ……………………………………………………………………………..66
جدول 3-3- مشخصه های متغیرهای تصمیم …………………………………………………………………………….66
جدول 3-4- مشخصه های متغیرهای تصمیم …………………………………………………………………………….66
جدول 4-1- اطلاعات ورودی و خروجی سال 93 ……………………………………………………………………….72
جدول 4-2- اطلاعات ورودی و خروجی سال 92………………………………………………………………………..73
جدول 4-3- داده های نرمال شده سال 93 ………………………………………………………………………………..74
جدول 4-4- داده های نرمال شده سال 92 ………………………………………………………………………………..74
جدول 4-5- کارایی واحدها در سال 92 و 93 …………………………………………………………………………….75
جدول 4-6- کارایی AP در سال 92…………………………………………………………………………………………….75
جدول 4-7- کارایی AP در سال 93…………………………………………………………………………………………….75
جدول4-8- ورودی ANN در سال 92…………………………………………………………………………………………..79
جدول4-9- ورودی ANN در سال 93…………………………………………………………………………………………..79
جدول 4-10- نرمال سازی داده ها ………………………………………………………………………………………………79
جدول 4-11- داده های نرمال شده ………………………………………………………………………………………………80
جدول 4-12- اندیس های مربوط به آموزش ………………………………………………………………………………….81
جدول 4-13- اندیس های مربوط به تست …………………………………………………………………………………….81
جدول 4-14- داده های ورودی و خروجی آموزش ………………………………………………………………………….81
جدول 4-15- داده های ورودی و خروجی تست ……………………………………………………………………………..82
جدول 4-16- ارزیابی شبکه آموزش دیده ……………………………………………………………………………………..82
جدول 4-17- صحت فرایند آموزش ………………………………………………………………………………………83
جدول 4-18- خروجی شبیه سازی شده و واقعی برای تست …………………………………………………….83
جدول 4-19- میانگین مربعات خطا ……………………………………………………………………………………..83
جدول 4-20- میانگین مقایسه کارایی خروجی ANN و DEA سال 92 …………………………………….85
جدول 4-21- میانگین مقایسه کارایی خروجی ANN و DEA سال 93 …………………………………….85
فصل اول
کلیات تحقیق
1-1- مقدمه
اندازه گیری کارایی1 به خاطر اهمیت آن در ارزیابی عملکرد2 یک شرکت یا سازمان همواره مورد توجه محققین قرار داشته است . در سال 1957 فارل با استفاده از روشی مانند اندازه گیری کارایی در مباحث مهندسی اقدام به اندازه گیری کارایی برای یک واحد تولیدی نمود .موردی که فارل برای اندازه گیری کارایی مد نظر قرار داده بود شامل یک ورودی و یک خروجی بود . مطالعه فارل شامل اندازه گیری “کارایی های فنی ” و ” تخصیصی ” و ” مشتق تابع تولید کارا ” بود . فارل مدل خود را برای تخمین کارایی بخش کشاورزی آمریکا نسبت به سایر کشورها مورد استفاده قرار داد. با این وجود او در ارائه روشی که در برگیرنده ورودی ها و خروجی های متعدد باشد ، موفق نبود .]1[
“چارنز3 ” ، ” کوپر4 ” ، ” رودز5 ” دیدگاه فارل را توسعه داده و مدلی را ارائه کردند که توانایی اندازه گیری کارایی با چندین ورودی و چندین خروجی را داشت . این مدل تحت عنوان ” تحلیل پوششی داده ها 6 ” نام گرفت و ایتدا در رساله دکتری ” ادوارد رودز ” و به راهنمایی ” کوپر ” تحت عنوان ” ارزیابی پیشرفت تحصیلی دانش آموزان مدارس ملی آمریکا ” در سال 1976 در دانشگاه کارنگی مورد استفاده قرار گرفت و در سال 1978 در مقاله ای تحت عنوان ” اندازه گیری کارایی واحدهای تصمیم گیرنده 7 ” ارائه شد .
از آنجا که این مدل توسط ” چارنز ” ، ” کوپر ” و ” رودز ” ارائه گردید به مدل CCR که از حروف اول نام سه فرد فوق تشکیل شده است معروف گردید . هدف در این مدل اندازه گیری و مقایسه کارایی نسبی واحدهای سازمانی مانند مدارس ، بیمارستان ها ، شعب بانک ، شهرداری ها و … که دارای چندین ورودی و خروجی شبیه بهم باشند .]2[
کاربرد گاز طبیعی به عنوان سوخت حرارتی تنها قسمتی از موارد متنوع کارایی این ماده گرانقدر به شمار می رود .اهمیت اصلی و واقعی گاز طبیعی با توجه با ارزش افزوده فراوان و قابلیت تبدیل به هزاران نوع کالای با ارزش اقتصادی در بخش صنعت و پتروشیمی ظاهر می شود .
نیاز روزافزون به گاز برای تامین انرژی و سوخت و همینطور ارز حاصل از فروش و صادرات برای سرمایه گذاری و راه اندازی صنایع مادر و زیربنایی کشور ، اندیشه تمرکز بخشیدن فعالیت های مرتبط با صنعت گاز را تقویت کرده و در این رابطه طبق اساسنامه قانونی ، شرکت ملی گاز ایران به عنوان یکی از چهار شرکت وابسته به وزارت نفت ایران با سرمایه اولیه 25 میلیارد ریال در سال 1344 هجری شمسی تأسیس گردید .
در این میان پالایشگاه های گاز نقش بسیار مهمی در فرآیند تصفیه گاز ، تولید محصولات جانبی ، تأمین گاز کشور و درآمد حاصل از فروش و صادرات آن به عهده دارند . ظرفيت پالايش و نم زدائي گاز طبيعي ايران با برخورداري از متوسط رشد سالانه 9 درصدي در دهه اخير در سال 1391 به 428 ميليون متر مكعب در روز رسیده است . با توجه به تمركز قابل ملاحظه ميادين گاز كشور در مناطق جنوبي امكانات پالايشي و نم زدائي كشور نيز عمدتا در اين ناحيه مستقر مي باشند. پالايشگاه بيد بلند با ظرفيت 22.5 ميليون متر مكعب در روز پالايشگاه فجر با ظرفيت 110 ميليون متر مكعب در روز و پالايشگاه سرخون با ظرفيت 7.1 ميليون متر مكعب ظرفيت نم زدائي در مناطق جنوبي و پالايشگاه شهيد هاشمي نژاد با ظرفيت 44.5 ميليون متر مكعب در روز در شمال شرق كشور از جمله مهمترين تاسيسات پالايشي كشور به شمار مي روند.
بدیهی است که ایجاد یک نظام کارا و استفاده بهینه از منابع باعث جلوگیری از هرز رفت مبالغ عظیمی از منابع مادی و معنوی می گردد به طوری که می تواند با درصد کمی افزایش در کارایی صرفه جویی زیادی حاصل گردد.لذا مطالعه سطح بهره وری پالایشگاه های گاز کشور کاملا ضروری است .برای رسیدن به این هدف لازم است ابتدا عملکرد8 پالایشگاه های گاز مورد ارزیابی و تحلیل قرار گرفته و سپس پالایشگاههایی که کارا نیستند مشخص و علل عدم کارایی آن ها را تعیین و نسبت به رفع آن اقدام نمود .
به عنوان یک اصل عملکرد هر واحد سازمانی و یا سازمان تا آنجا که میسر است باید اندازه گیری شود . وجود و یا عدم وجود نظام ارزیابی عملکرد موثر9 و کارآمد با مرگ سازمان رابطه ی مستقیم دارد و فقدان آن را به عنوان بیماری سازمانی قلمداد نموده اند . بدون اندازه گیری ، مبنایی برای قضاوت و اظهارنظر و ارزیابی وجود نخواهد داشت آن چه را که نتوان ارزیابی نمود نمیتوان به خوبی اداره کرد . هر سازمانی برای اعمال مدیریت صحیح باید از الگوهای علمی ارزیابی عملکرد بهره گیرد تا بتواند میزان تلاش و نتایج حاصل از کارکرد خود را مورد سنجش قرار دهد . تنوع وظایف سازمانی اعم از وظایف عمومی و اختصاصی به پیچیدگی ارزیابی آن ها می افزاید و استفاده از ابزارهای کارامد علمی را برای محقق ساختن یک ارزیابی واقعی از هر دو بعد عملکردی و سیاست گذاری اجتناب ناپذیر می کند . یکی از ابزار های کارامد که این مهم را محقق ساخته تحلیل پوششی داده هاست که چهارچوب نظام ارزیابی عملکرد با استحکامی را در خود تدارک می بیند .
لذا در نظر است مقایسه ای بین عملکرد پالایشگاه های گاز کشور انجام گیرد و از میان آن ها پالایشگاه های با کارایی بالاتر را انتخاب نمود . مضافاٌ این که می توان آن ها را به عنوان واحدهای کارا و ناکارا دسته بندی کرد و در صورت امکان برای واحدهای ناکارا راه حل مناسب ارائه نمود .]15[
1-2- تعریف مسأله
یکی از عمده ترین مشکلات استفاده از ” تحلیل پوششی داده ها ” ضعف قدرت تفکیک پذیری برای ” واحد های تصمیم گیرنده ” است . این مشکل عمدتاٌ به علت کم بودن تعداد واحد ها در مقایسه با تعداد ورودی ها و خروجی ها ی مدل می باشد . این مشکل در ارزیابی عملکرد 6 پالایشگاه گاز کشور با توجه به تعداد زیاد ورودی ها10 و خروجی های11 هر پالایشگاه گاز به خوبی خود را نمایان می کند .بر این اساس و برای رفع این اشکال مدل تلفیقی از شبکه های عصبی مصنوعی12 و تحلیل پوششی داده ها در این تحقیق مورد استفاده قرار گرفته است که موجب افزایش قدرت تفکیک پذیری مناسب پالایشگاه ها 13شد .
ارزیابی عملکرد شرکت ها همواره از مسأله های چالش برانگیز در حوزه ی های مدیریت بوده است . اندازه گیری کارایی خصوصا در دو دهه ی اخیر ، به علت اهمیت آن در ارزیابی عملکرد ، مورد توجه زیادی قرار گرفته است . از سال 1957 که فارل روشی را برای اندازه گیری کارایی مطرح کرد تا کنون بازنگری های جامع و اساس در موضوع اندازه گیری کارایی صورت گرفته است .همچنین دیدگاه های پارامتری و غیر پارامتری به طور گسترده ای در ارزیابی کارایی مورد استفاده قرار می گیرند .ضمن اینگه دیدگاه های اولیه عمدتاٌ شامل مرزهای قطعی و مرزهای تصادفی بوده و بعدها دیدگاه هایی مثل DEA و FDH نیز مطرح شده است .
روش های بسیاری برای اندازه گیری کارایی در تحقیقات مربوط مطرح شده است .اما در مقایسه ی بین تمامی مدل های فوق ، DEA14 روش بهتری برای سازماندهی و تحلیل داده هاست . زیرا اجازه می دهد که کارایی در طول زمان تغییر کند و به هیچ گونه پیش فرضی در مورد مرز کارایی نیاز ندارد . با این وجود مرز کارایی که از DEA حاصل شده نسبت به اغتشاش آماری و داده های پرت که در اثر خطای اندازه گیری یا هر عامل خارجی دیگر ایجاد شود ، حساس است و اگر در داده ها اغتشاش آماری یا داده های پرت وجود داشته باشد ممکن است موجب شود تا مرز کارایی به دست آمده جا به جا شود و مسیر تحلیل های DEA را منحرف سازد . وجود این مسأله باعث شده است که اخیراٌ شبکه های عصبی مصنوعی به عنوان جایگزین خوبی برای برآورد مرزهای کارا جهت تصمیم گیری به کار گرفته شود . ] 2 [
لذا در این پژوهش سعی شده است معیار های ارزیابی عملکرد پالایشگاه های گاز کشور تعیین و با استفاده از مدل ترکیبی Neuro-DEA با اندازه گیری کارایی و تعیین پالایشگاه های کارا و ناکارا و کمک به بهینه سازی شرکت ملی گاز ایران از طریق نظام ارزیابی عملکرد و رتبه بندی پالایشگاه های گاز کشور کمک نمود .
1-3- اهداف اساسی از انجام تحقیق
هدف اولیه این تحقیق طراحی و تبیین مدل ارزیابی عملکرد و کارایی پالایشگاه های گاز کشور می باشد . از دیگر اهداف تحقیق می توان به موارد زیر اشاره کرد :
تعیین معیارهای ارزیابی عملکرد پالایشگاه های گاز کشور
اندازه گیری کارایی پالایشگاه های گاز کشور و تعیین شرکت های کارا 15و ناکارا 16
کمک به بهینه سازی شرکت ملی گاز ایران از طریق نظام ارزیابی عملکرد و رتبه بندی پالایشگاه های گاز کشور
1-4- ضرورت انجام تحقیق
با توجه به اهمیت کارایی در پیشبرد جوامع و جایگاهی که در میان سایر علوم به خود اختصاص داده است بررسی همه جانبه آن ، به ویژه تحلیل ابعاد ریاضی آن به عنوان معیاری برای سنجش عملکرد ضرورتی اجتناب ناپذیر می باشد .
لذا محاسبه کارایی ، ارزیابی و رتبه بندی تمام شعب و ادارات زیر مجموعه یک خدمت یا صنعت ، کاری ضروری است ، و لازم است حداقل سالی یکبار عملکرد آن ها را بر پایه اصول علمی مورد ارزیابی قرار داد .
صنعت نفت و گاز به عنوان یکی از اساسی ترین صنایع ایران از حساس ترین و مهم ترین منابع درآمد دولت به شمار می رود . بدیهی است وجود کارایی مناسب در این صنعت عایدات دولت را چندین برابر می نماید و این مهم جز با ارزیابی دقیق و صحیح واحدهای تحت پوشش میسر نمی شود .
1-5- فرضیات تحقیق
از آنجایی که هدف ارزیابی عملکرد و کارایی پالایشگاه های گاز کشور با مدل ترکیبی Neuro /DEA یا برخی تکنیک های آماری می باشد لذا این تحقیق فاقد فرضیه می باشد .] 2 [
1-6- جامعه آماری
جامعه آماری این پژوهش ، پالایشگاه های گاز کشور (6 پالایشگاه ) که در حال حاضر در کشور در حال فعالیت هستند .
1-7- قلمرو تحقیق
1-7-1- قلمرو موضوعی :
قلمرو موضوعی تحقیق در حوزه ارزیابی عملکرد بر مبنای مدل های DEA و شبکه عصبی می باشد .
1-7-2- قلمرو مکانی :
قلمرو مکانی تحقیق پالایشگاه های گاز کشور می باشد که در حال حاضر 7 پالایشگاه در سطح کشور مشغول به فعالیت هستند .
1-7-3- قلمرو زمانی :
در این تحقیق ، اطلاعات جمع آوری شده پالایشگاه های کشور در اردیبهشت ماه سال های 92 و 93 مینای ارزیابی عملکرد قرار گرفته است .
1-8- مراحل انجام تحقیق :
مطالعات کتابخانه ای در مورد موضوع تحقیق
تعیین شاخص های ورودی و خروجی پژوهش از طریق نظر خبرگان
مطالعه علمی روی مدل ها و تکنیک های ارزیابی و اندازه گیری کارایی
انتخاب مدل و رویکرد مناسب جهت بررسی و اندازه گیری کارایی پالایشگاه های گاز کشور
طراحی مدل های پارامتری و اندازه گیری کارایی پالایشگاه های مورد نظر
اندازه گیری کارایی پالایشگاه ها با روش DEA و Neuro-DEA
مقایسه ی نتایج حاصل از این دو روش
فصل دوم
مرور ادبیات و بررسی پیشینه ی تحقیق
2-1- مقدمه
همانطور که قبلاٌ گفته شد ، باید در استفاده از DEA17 برای ارزیابی عملکرد سایر واحدهای تصمیم گیرنده احتیاط کرد . وجود این مسأله باعث شده است که اخیراٌ شبکه های عصبی مصنوعی18 به عنوان جایگزین خوبی برای برآورد مرزهای کارا جهت تصمیم گیری به کار گرفته شود .زیرا ماهیت عملکرد شبکه های عصبی به دلیل قدرت یادگیری و تعمیم پذیری به گونه ای است که در برابر داده های پرت و اغتشاشات حاصل از اندازه گیری غیر دقیق داده ها مقاوم تر عمل می کنند .در زیر مختصری راجع به تحلیل پوششی داده ها و شبکه های عصبی مصنوعی می پردازیم . ]2[
2-2- تعاریف کارایی19
2-2-1- تعریف کارایی اقتصادي
کارایی اقتصادي عبارت است از نسبت میزان محصول تولیدي قابل استفاده به میزان منابع تولیدي که براي ساخت آن محصول به کار گرفته شده است.(کارایی برحسب میزان محصول)
کارایی هرسیستم برحسب ارزش محصول به دست آمده درازاي ارزش هرواحد از منابع تولید به کار رفته اندازه گیري می شود. (کارایی برحسب قیمت وارزش )
کارایی اقتصادي دریک موسسۀ تولیدي متضمن حل دو مسئلۀ ” انتخاب ترکیب مناسبی ازمنابع تولیدي” و ” انتخاب روش وطریقۀ تولید” است .]5[
2-2-2- تعریف کارایی فنی وتخصیصی
همان گونه که در تعاریف بالا ملاحظه می شود، کارایی اقتصادي شامل دوجزء کارایی فنی وکارایی اقتصادي می باشد. فارل20 کارایی اقتصادي را شامل دوجزء زیر تعریف می کند:
1- کارایی فنی منعکس کنندة توانایی یک بنگاه در به دست آوردن حد اکثر خروجی از ورودي هاي به کار گرفته شده است.
2- کارایی تخصیصی منعکس کنندة توانایی یک بنگاه براي استفادة از ورودي ها به نسبت بهینه با توجه به قیمت و فناوري تولید است.
ترکیب دو کارایی فنی وتخصیصی را ، کارایی اقتصادي می نامند . ]9[
2-3- روش هاي اندازه گیري کارایی فنی
به طورکلی دراندازه گیري کارایی بنگاه ها( واحد ها ) دوروش عمده براي اندازه گیري کارایی وجوددارد. یکی روش هاي پارامتري ودیگري روش هاي ناپارامتري .
2-3-1- روش هاي پارامتري21
درروش پارامتري با استفاده از روش هاي مختلف آماري واقتصاد سنجی تابع تولید مشخصی تخمین زده می شود. سپس با به کارگیري این تابع نسبت به تعیین کارایی اقدام می شود. روش رگرسیون22 از جمله روش هاي پارامتري است.
2-3-2- روش هاي نا پارامتري
روش هاي ناپارامتري به تخمین تابع تولید نیاز ندارند. ازجمله روش هاي ناپارامتري تحلیل پوششی داده ها است ،که کارایی نسبی واحد ها را درمقایسه با یکدیگر مورد ارزیابی قرار می دهد. دراین روش به شناخت شکل تابع تولید نیازي نیست و محدودیتی درتعداد ورودي ها و خروجی ها وجود ندارد. ]9[
2-4- مقایسۀ رگرسیون وتحلیل پوششی داده ها
روش رگرسیون میانگین مشاهدات مربوط به واحدها را تعیین وعملکرد هر واحدرا نسبت به یک معادلۀ رگرسیون بهینه شده ، مشخص می کند. تحلیل پوششی داده ها از تمامی مشاهدات گردآوري شده براي اندازه گیري کارایی استفاده کرده وهرکدام از مشاهدات را درمقایسه با مرز کارا سنجیده وآن را بهینه می نماید. روش تحلیل پوششی داده ها باترکیب تمامی واحد هاي تحت بررسی، یک واحد مجازي بابالاترین کارایی را می سازد وواحد هاي نا کارا را با آن مقایسه می کند. شکل زیر تفاوت این دو روش را نشان می دهد .]1[
شکل 1 -1- مقایسه رگرسیون و تحلیل پوششی داده ها
2-5- مفاهیم کارایی
2-5-1- تعریف کارایی
کارایی میزان بهره وري23 یک سازمان از منابع خود درعرصۀ تولید نسبت به بهترین عملکرد در مقطعی از زمان است. کارایی با نسبت خروجی واقعی به خروجی مورد انتظار تعریف می شود، یعنی :
2-5-2- انواع کارایی ها :
کارایی درانواع زیر تعریف می شوند:
2-5-2-1- کارایی فنی :
کارایی فنی میزان تبدیل ورودي هایی مانند نیروي انسانی وماشین آلات به خروجی ها، درمقایسه با بهترین عملکرد است.
کارایی فنی نشان دهندة میزان توانایی یک بنگاه براي حداکثر کردن میزان تولید با توجه به منابع وعوامل مشخص شدة تولید است. درتحلیل پوششی داده ها کارایی فنی با نسبت مجموع موزون خروجی ها به ورودي ها تعریف می شود. دراقتصاد زمانی یک بنگاه را به لحاظ فنی کارا می دانند که مقدار تولید آن برروي منحنی تولید یکسان قرار گیرد.
2-5-2-2- کارایی تخصیصی
کارایی تخصیصی بر تولید بهترین ترکیب محصولات با استفاده از کم هزینه ترین ترکیب ورودي ها دلالت می کند. درواقع کارایی تخصیصی به این پرسش پاسخ می دهد که آیا قیمت ورودي هاي مورد استفاده به گونه اي هست که هزینۀ تولید را حداقل نماید.
2-5-2-3- کارایی ساختاري
کارایی ساختاري معمولا براي یک صنعت تعریف می شود. کارایی ساختاري یک صنعت از متوسط وزنی کارایی شرکت هاي مختلف آن صنعت به دست می آید. با استفاده از معیار هاي کارایی ساختاري می توان کارایی صنایع مختلف با محصولات متفاوت را با هم مقایسه نمود.
2-5-2-4- کارایی مقیاس
کارایی مقیاس یک واحد ازنسبت کارایی مشاهده شدة آن واحد به کارایی درمقیاس بهینه (به کارایی واحدي که بهترین کارایی را دارد) به دست می آید . هدف این کارایی ، تولید درمقیاس بهینه است . ]1[
2-6- استفاده ازنسبت دراندازه گیري کارایی
همان گونه که درمفهوم کارایی بیان شد ، کارایی به صورت نسبت خروجی به ورودي به صورت زیرتعریف می شود :
با توجه به رابطۀ فوق براي بهبود کارایی یک بنگاه یا واحد صنعتی پنج روش زیر وجود دارد:
الف- افزایش ورودي وبه دست آوردن خروجی بیشتر
ب – ثابت نگه داشتن ورودي وافزایش خروجی
ج- کاهش ورودي وکاهش کمتر خروجی
د- کاهش ورودي وثابت نگه داشتن خروجی
ه- کاهش ورودي وافزایش خروجی
نسبت فوق درمقایسۀ کارایی واحد هایی که فقط ازیک ورودي ویک خروجی استفاده می کنند، آسان است. ولی این گونه واحد ها درعمل بسیار نادرند. عموما واحد ها ازتعداد زیادي ورودي وخروجی استفاده می کنند. ]1[
2-7- انواع مدل هاي24 پایه اي (کلاسیک) تحلیل پوششی داده ها :
تحلیل پوششی داده ها داراي مدل هاي پایه اي به شرح زیراست:
مدل CCR 25
مدل BCC 26
مدل جمعی SBM 27
که درزیر به تشریح هریک آن ها پرداخته می شود.
2-7-1- مدل CCR :
مدل CCR دریک دسته بندي کلی به فرم کسري وفرم خطی تقسیم می شود . مدل CCR در فرم خطی به مدل CCR ورودی محور28 و مدل CCR خروجی محور29 تقسیم می شود .
مدل CCR ورودي محور خود در سه فرم کسري، مضربی، وپوششی طبقه بندي می گردد .
مدل CCR خروجی محور نیز داراي فرم هاي مضربی وپوششی می باشد.
در زیر انواع فرم های CCR تشریح می شوند :
2-7-1-1- مدل CCR در فرم کسری
اگر هدف ، بررسی کارایی n واحد تصمیم گیرنده یا DMU 30 باشد که هر واحد دارای m ورودی و s خروجی به صورت زیر باشند :
می باشد . کارایی واحد j ام به صورت زیر محاسبه می شود :

که ur و vi به ترتیب وزن های خروجی و ورودی واحد j ام می باشند .
برای ساختن مدل ، فرض کنید n واحد تصمیم گیرنده (DMU) موجود است و هدف ارزیابی واحد تحت بررسی ( واحد صفر یا واحد تصمیم گیرنده31 ) است ، که ورودی های x10 ، x20 ، … و xm0 را برای تولید y10 ، y20 ، و … ys0 به مصرف می رساند .
حال براي واحد صفر ، یک واحد مجازي می سازیم که ورودي وخروجی آن به صورت زیر است:
(2)
(3)
که vi وزن های ورودی و ur وزن های خروجی واحد مجازی است ، که در واقع متغیرهای تصمیم مدل بوده و هدف تعیین آن هاست . ]1[
حال می خواهیم مقادیر vi و ur را برای واحد مجازی صفر ( واحد تحت بررسی ) طوری انتخاب کنیم که کارایی آن ماکسیمم شود ، یعنی :

در مدل فوق اگر ur ها خیلی بزرگ و vi ها خیلی کوچک باشند ، آنگاه مقدار نسبت ها می تواند نامحدود وبی نهایت گردد. براي جلوگیري از ایجاد چنین مشکلی تمامی نسبت ها (کارایی همۀ واحدها) را کوچکتر یا مساوي یک درنظر می گیرند وبه عنوان محدودیت وارد مدل می کنند. با توجه به توضیحات فوق مدل کلی CCR در فرم کسری به صورت زیر در می آید :

2-7-1-2- مدل CCR در فرم خطی
برای تبدیل مدل کسری CCR ، به یک مدل برنامه ریزي خطی ، چارنز، کوپر و رودز دو شیوه ، را به کار گرفته اند. درشیوة اول مخرج کسر را ثابت درنظر گرفته وصورت آن را حد اکثر می نمایند. مدل حاصل از این شیوه را مدل ورودي محور (نهاده گرا) می نامند. درشیوة دوم صورت کسر را ثابت نگهداشته ومخرج آن را حد اقل می کنند. مدل حاصل از این شیوه را مدل خروجی محور (ستاده گرا) می گویند.]1[
2-7-1-3- مدل CCR ورودی محور
مدل هاي ورودي محور دریک تقسیم بندي به دو گروه مدل هاي مضربی ومدل هاي پوششی تقسیم می شوند، که درادامه به تشریح آن ها می پردازیم.
2-7-1-4- مدل مضربی32 CCR ورودی محور
دراین روش براي تبدیل مدل نسبت CCR به مدل برنامه ریزي خطی ، مخرج کسر را معادل یک، قرار می دهیم وصورت کسر را ماکسیمم می نماییم. بدین ترتیب مدل به صورت زیر درمی آید:
2-7-1-5- مدل پوششی33 CCR ورودی محور
قبلا مدل مضربی CCR ورودی محور به صورت زیر ارائه گردید :
درمدل فوق براي هر واحد تصمیم گیرنده، باید یک محدودیت (قید) نوشته شود. به این ترتیب ، یک مدل برنامه ریزي خطی به دست خواهد آمد که تعداد محدودیت هاي آن از تعداد متغیر هایش بیشتر است. ازآن جا که حجم عملیات در روش سیمپلکس براي حل مسایل برنامه ریزي خطی بیشتر وابسته به تعداد محدودیت ها است تا تعداد متغیرها . به همین دلیل از مدل دوگان34 (ثانویه) مسئلۀ فوق استفاده می شود که نیازمند حجم عملیات کمتري است.
براي تبدیل مدل اولیۀ فوق به مدل دوگان ، متغیر متناظر با محدودیت (1 ) را درمسئلۀ دوگان با θ و متغیر هاي متناظر با محدودیت هاي ( 2 ) را با jλ نشان می دهیم. مدل ثانویه (دوگان) به صورت زیر در خواهد آمد :
مدل فوق با تغییر اندکی به صورت زیر در می آید. این مدل رافرم پوششی مدل CCR ورودی محور می نامند .
دقت کنید که در مدل اولیه ، m ورودی و s خروجی و n واحد تصمیم گیرنده وجود داشت ، که براساس آن مسأله دوگان دارای (m+1 ) متغیر است که تعداد محدودیت های آن کمتر از مسأله اولیه و در نتیجه حل آن مستلزم حجم عملیات کمتری است . مدل پوششی همان دوگان مدل اولیه است .
2-7-1-6- مدل CCR خروجی محور35
دریک مدل خروجی محور ، یک واحد درصورتی ناکارا است که امکان افزایش هر یک از خروجی ها بدون افزایش یک ورودي یا کاهش یک خروجی دیگر وجود داشته باشد.
مدل نسبت ( کسری ) CCR را که درابتدا توضیح داده شد، دوباره به شرح زیر می نویسیم:

در مدل CCR خروجی محور، براي خطی کردن مدل غیرخطی36 فوق صورت کسر را برابر 1 می گیرند ومخرج آن را می نیمم می کنند. بدین ترتیب مدل ها به صورت زیر در می آیند:
2-7-1-7- مدل مضربی CCR خروجی محور
2-7-1-8- مدل پوششی CCR خروجی محور
برای ساختن مدل پوششی CCR خروجی محور ، دوگان مدل مضربی CCR خروجی محور را با قرار دادن θ و jλ به عنوان متغیر هاي دوگان متناظر با محدودیت اول ومحدودیت هاي دوم به صورت زیر به دست می آوریم:
هدف ما کسب بیشترین مقدار خروجی است . در این مدل 1 < θ است و 1/θ میزان کارایی را نشان می دهد .]1[
2-7-2- مدل BCC
بنکر، چارنز وکوپر باتغییر درمدل CCR ، مدل جدیدي را عرضه کردند که بر اساس حروف اول نام خانوادگی آنان به مدل BCC شهرت یافت . این مدل از انواع مدل هاي تحلیل پوششی داده ها است که به ارزیابی کارایی نسبی واحدهایی با بازده متغیر نسبت به مقیاس می پردازد. مدل هاي بازده به مقیاس ثابت محدود کننده تر از مدل هاي بازده به مقیاس متغیر هستند، زیرا مدل بازده به مقیاس ثابت واحد هاي کاراي کمتري را در برمی گیرد ومقدار کارایی نیز کمتر می شود.
بازده به مقیاس37
بازده به مقیاس مفهومی است بلند مدت ، که منعکس کنندة نسبت افزایش درخروجی به ازاي افزایش درمیزان ورودي ها است. این نسبت می تواند ثابت ، افزایشی یا کاهشی باشد.
: 38CRSبازدة ثابت به مقیاس: بازده به مقیاس ثابت نسبت بازدة ثابت به مقیاس وقتی صادق است که افزایش در ورودي به همان نسبت باعث افزایش درخروجی شود. به عنوان مثال اگر نیرویکار وسرمایه دو برابر شود، میزان محصول هم دو برابر گردد.
IRS 39 بازده افزایشی به مقیاس : بازدة افزایشی نسبت به مقیاس آن است که میزان خروجی به نسبتی بیش از میزان افزایش در ورودي ها ، افزایش یابد.
40DRS بازدة کاهشی به مقیاس : درصورتی که میزان افزایش در خروجی ها کمتر از نسبتی باشد که ورودي ها افزایش می یابند، بازده به مقیاس کاهشی ایجاد می شود.
PPS 41مجموعۀ امکان تولید : تمامی ترکیب هاي ممکن ازورودي ها وخروجی هارا مجموعۀ امکان تولید می نامند. به عنوان درشکل زیر نمایش داده y ویک خروجی x مثال منحنی نمایش تابع تولید که براي یک ورودي شده است. ]6[
2-7-2-1- مدل نسبت BCC
مدل نسبت BCC براي ارزیابی کارایی واحد تحت بررسی(صفر) به صورت زیر است:
ساختار مدل نسبت BCC همانند مدل نسبت CCR است که در تابع هدف مهم در تمامی قیود به صورت کسر یک متغیر آزاد در علامت w افزوده می شود .
2-7-2-2- مدل مضربی BCC ورودی محور 42
مدل مضربی BCC ورودی محور ، از حداکثر کردن صورت کسر و ثابت نگه داشتن مخرج کسر به وجود می آید .
مدل مضربی BCC ورودی محور به صورت زیر است :
همانطور که ملاحظه می شود ، تفاوت این مدل با مدل CCR در وجود متغیر آزاد در علامت w است . علامت متغیر w در این مدل نوع بازده به مقیاس را به صورت زیر تعیین می کند :
الف ) هرگاه w<0 باشد ف نوع بازده به مقیاس ف کاهشی است .
ب ) هرگاه w=0 باشد ، نوع بازده به مقیاس ، ثابت است .
ج ) هرگاه w>0 باشد ، نوع بازده به مقیاس ، افزایشی است .]1[
2-7-2-3- مدل پوششی BCC ورودی محور
مدل پوششی BCC ورودی محور ، به صورت زیر است :
همان گونه که مشاهده می شود محدودیت متناظر با اضافه شدن متغیر آزاد در علامت w در مسأله اولیه ، محدودیت ∑_(j=1)^n▒〖λj=1〗 است . در این مدل ، θ نسبت کاهش ورودي هاي واحد تحت بررسی را براي بهبود کارایی نشان می دهد.
یک واحد دراین مدل کارا است ، اگر وفقط اگر دوشرط زیر براي آن بر قرار باشد:
الف ) 1 = *θ
ب ) تمامی متغیرهاي کمکی مقدار صفر داشته باشند
2-7-2-4- مدل مضربی BCC خروجی محور
مدل مضربی BCC خروجی محور ، به صورت زیر است :
2-7-2-5- مدل پوششی BCC خروجی محور 43
مدل پوششی BCC خروجی محور ، به صورت زیر می باشد :
2-7-3- مدل جمعی ( SBM= Slack Based Model )
مدل هاي ورودي محور درحالی که میزان خروجی ها را در سطح داده شده حفظ می کند، به طور مناسب ودر حد امکان نسبت به کاهش میزان ورودي ها اقدام می نماید. برعکس ، مدل هاي خروجی محور با حفظ میزان ورودي به طور متناسب ، خروجی ها افزایش می دهد
مدل جمعی ، مد لی است که همزمان کاهش ورودي ها وافزایش خروجی ها را مورد توجه قرار می دهد.
انواع این مدل به مدل به صورت جدول در زیر خلاصه شده است :
جدول 2-1- مدل جمعی
دید گاه ورودي محور، خروجی محور وبازده به مقیاس ثابت ومتغیر44
بازده به مقیاس ، ارتباط بین تغییرات ورودي ها وخرجی هاي یک بنگاه، یک سیستم تولیدي یا یک سیستم خدماتی را بیان می کند. به طور واضح تر بازده به مقیاس به این پرسش ، پاسخ می دهد که اگر میزان منابع ومواد اولیۀ یک کارخانه دوبرابر شود میزان تولید یا ستادة آن چند برابر تغییر می کند؟ سه حالت زیرممکن است اتفاق بیفتد:
الف) با دوبرابر شدن میزان منابع ، میزان خروجی نیز دو برابر شود(بازده به مقیاس ثابت)
ب) با دوبرابر شدن میزان منابع ، میزان خروجی کمتر ازدوبرابر شود ( بازده به مقیاس کاهشی )
ج) با دوبرابر شدن میزان منابع ، میزان خروجی بیشتر ازدوبرابر شود( بازده به مقیاس افزایشی )
2-8- رتبه بندي45 واحد هاي کارا
همان گونه که قبلا بیان شد، درتحلیل پوششی داده ها، واحد هاي تحت بررسی به دو گروه کارا وناکارا تقسیم می شوند. واحد هاي کارا واحد هایی هستند که امتیاز کارایی آن ها برابر با یک است. واحد هاي ناکارا با کسب امتیاز کارایی قابل رتبه بندي هستند. اما واحد هاي کارا ، چون همگی داراي امتیاز یک می باشند، با استفاده از مدل هاي کلاسیک تحلیل پوششی داده ها قابل رتبه بندي نیستند. بدیهی است که رتبه بندي واحد هاي کارا به جهت تعیین کارا ترین واحد ها ، اهمیت زیادي دارد. لذا روش هاي زیر به منظور رتبه بندي این واحد ها ارایه شده است.
2-9- روش اندرسون – پیترسون 46
درسال 1993 ، اندرسون وپترسون ، روشی را براي رتبه بندي واحد هاي کارا پیشنهاد کردند که تعیین کاراترین واحد را از میان واحد هاي کارا میسر می سازد. بااین روش امتیاز واحد هاي کارا می تواند ازیک بیشتر شود. به این ترتیب ، واحد هاي کارا نیز می توانند مانند واحد هاي ناکرا رتبه بندي شوند. رتبه بندي واحد هاي کارا به صورت زیر انجام می شود.
گام 1 : مدل مضربی ( یا پوششی ) CCR را براي واحد هاي تحت بررسی حل کنید تا واحد هاي کارا و غیر کارا مشخص شوند .
در صورتی که واحد تحت ارزیابی واحد k باشد ، مدل مضربی آن به صورت زیر است :
و مدل پوششی آن به صورت زیر است :
توجه : در مدل BCC ، محدودیت ∑_(j=1)^n▒〖λj=1〗 به مجموعه محدودیت های فوق اضافه می شود .
گام 2 : فقط واحد هاي کارایی را درنظر بگیرید که امتیاز آن ها درقدم اول معادل یک شده وازمجموعۀ محدودیت قدم اول، محدودیت مربوط به آن واحد را از مدل مضربی متناظر به این محدودیت را از مدل پوششی حذف ودوباره مدل را حل کنید.
در حالتی که واحد k ، واحدی کارا باشد ، در این گام ، در مدل مضربی محدودیت شماره ی 3 به صورت زیر خواهد بود :
ودر مدل پوششی محدودیت هاي 5 و 6 به صورت زیر در می آیند:
از آن جا که درگام 2 محدودیت مربوط به واحد تحت بررسی که حد بالاي آن عدد 1 است ، حذف می شود، مقدار کارایی می تواند بیش از 1 شود. بدین ترتیب، واحدهاي کارا با امتیاز هایی بالاتر از یک رتبه بندي می شوند. ]2[
2-10- شبکه های عصبی مصنوعی ( ANNs ) 47
2-10-1- مقدمه
در سالیان اخیر شاهد حرکتی مستمر از تحقیقات صرفاٌ تئوری به تحقیقات کاربردی علی الخصوص در پردازش اطلاعات برای مسائلی که یا برای آن ها راه حلی موجود نیست و یا به راحتی قابل حل نیستند ، بوده ایم . با عنایت به این حقیقت ، علاقه فزاینده ای در توسعه تئوریک سیستم های دینامیکی هوشمند مدل – آزاد که مبتنی بر داده های تجربی هستند ، ایجاد شده است . ” شبکه های عصبی مصنوعی ” جزء این دسته از سیستم های دینامیکی قرار دارند که با پردازش روی داده ها تجربی دانش یا قانون نهفته در ورای داده ها را به ساختار شبکه منتقل می کنند . به همین خاطر به این سیستم ها هوشمند گویند چرا که براساس محاسبات روی داده ها عددی یا مثال ها قوانین کلی را فرا می گیرند . این سیستم های مبتنی بر هوش محاسباتی سعی در مدل سازی ساختار نرو – سیناپتیکی مغز بشر دارند .
پیاده سازی ویژگی های شگفت انگیز مغز در یک سیستم مصنوعی ( سیستم دینامیکی ساخته دست بشر ) همیشه وسوسه انگیز و مطلوب بوده است . بسیارند محققینی که طی سال ها در این زمینه فعالیت ها کرده اند ، لیکن نتیجه این تلاش ها ، صرف نظر از یافته های ارزشمند ، باور هرچه بیشتر این اصل بوده است که ” مغز بشر دست نیافتنی است . ” با تأکید بر این نکته که گذشته از متافیزیک ، دور از دسترس بودن ایده آل ” هوش طبیعی ” را می توان با عدم کفایت دانش موجود بشر از فیزیولوژی عصبی پذیرفت باید اذعان داشت که عالی بودن هدف و کافی نبودن دانش موجود ، خود سبب انگیزش پژوهش های بیشتر و بیشتر در این زمینه بوده و خواهد بود ، همچنان که امروزه شاهد بروز چنین فعالیت هایی در قالب شبکه های عصبی مصنوعی هستیم . اغلب آنهایی که با چنین سیستم هایی آشنایی دارند به اغراق آمیز بودن آن ها معترفند .
این اغراق ، اگر چه بیانگر مطلوبیت و نیز بعضی مشابهت های این گونه سیستم ها با سیستم های طبیعی است ، ولی می تواند تا حدی بین آنچه که سیستم های عصبی مصنوعی در اختیار قرار می دهد و آنچه که از نامشان بر می آید تناقض ایجاد نماید . لذا هنگام صحبت کردن در مورد اساس شبکه های عصبی ، باید حدود انتظارات و برداشت ها و شباهت ها را مشخص کرد .
2-10-2- شبکه عصبی
جانوران پرسلولی برای ایجاد هماهنگی بین اعمال سلول ها و اندام های مختلف بدن خود نیاز به عوامل و دستگاه های ارتباطی دارند.دستگاه عصبی با ساختار و کار ویژه ی ای که دارد،در جهت ایجاد این هماهنگی به وجود آمده است. نورون ها پیام عصبی را به بافت ها و اندام های بدن ،مانند ماهیچه ها غده هاو نیز نورون های دیگر میفرستد و از این طریق با آنها ارتباط برقرار میکند. رشته هایی که از جسم سلولی نورون ها بیرون زده اند دو نوع اند:دندریت و آکسون دندریت ها پیام هارا دریافت میکنند و به جسم سلولی میبرند،آکسون ها پیام عصبی را از جسم سلولی به تا پایانه های آکسون هدایت میکند. وظایف دستگاه عصبی به ارتباط متقابل بین میلیون ها نورون وابسته است.در دستگاه عصبی دو بخش اصلی وجود دارد;دستگاه عصبی مرکزی و دستگاه عصبی محیطی.دستگاه عصبی مرکزی شامل مغز و نخاع است که مراکز نظارت بر اعمال بدن اند.این دستگاه اطلاعات دریافتی از محیط و درون بدن را تفسیر میکند و به آنها پاسخ میدهد.دستگاه عصبی مرکزی از دو بخش ماده ی خاکستری که بیشتر محتوی جسم سلولی نورون هاست و ماده ی سفید که اجتماع بخش های میلین دار نورون هاست،تشکیل شده است. دستگاه عصبی محیطی شامل تعداد زیادی عصب است که اطلاعات را جمع آوری میکند و به دستگاه عصبی مرکزی میبرد. مغز حدود۱۰۰میلیارد نورون48 است و حدود ۱.۵کیلوگرم وزن دارد.مغز شامل :مخ،مخچه و ساقه مغز است. مخ بزرگترین بخش مغز است وتوانایی یادگیری ،حافظه،وعملکرد هوشمندانه را دارد.مخچه مهمترین مرکز یادگیری حرکات لازم برای تنظیم حالت بدن و تعادل است. ساقه ی مغز در قسمت پایینی مغز قرار دارد و شامل مغز میانی،پل مغز و بصل النخاع است . نخاع درون ستون مهره ها از بصل النخاع تا کمر امتداد دارد.نخاع مغز را به دستگاه عصبی محیطی وصل میکند. دستگاه عصبی محیطی شامل۳۱جفت عصب نخاعی و ۱۲جفت عصب مغزی است.دستگاه عصبی محیطی شامل دو بخش پیکری که ارادی است و خودمختار که اعمال غیر ارادی مارا بر عهده دارد.دستگاه عصبی خود مختار شامل اعصاب پارا سمپاتیک و سمپاتیک میباشد که اعصاب پارا سمپاتیک باعث برقراری ارامش و اعصاب سمپاتیک در مواقع هیجانی روانی یا جسمی فعال میشوند. ]13[
2-10-3- معرفی شبکه عصبی مصنوعی
شبکه عصبی مصنوعی یک سامانه پردازشی داده‌ها است که از مغز انسان ایده گرفته و پردازش داده‌ها را به عهدهٔ پردازنده‌های کوچک و بسیار زیادی سپرده که به صورت شبکه‌ای به هم پیوسته و موازی با یکدیگر رفتار می‌کنند تا یک مسئله را حل نمایند. در این شبکه‌ها به کمک دانش برنامه نویسی، ساختار داده‌ای طراحی می‌شود که می‌تواند همانند نورون عمل کند. که به این ساختارداده نورون گفته می‌شود. بعد باایجاد شبکه‌ای بین این نورونها و اعمال یک الگوریتم آموزشی به آن، شبکه را آموزش می‌دهند.
در این حافظه یا شبکه عصبی نورونها دارای دو حالت فعال (روشن یا ۱) و غیرفعال (خاموش یا ۰) اند و هر یال (سیناپس یا ارتباط بین گره‌ها) دارای یک وزن می‌باشد. یال‌های با وزن مثبت، موجب تحریک یا فعال کردن گره غیر فعال بعدی می‌شوند و یال‌های با وزن منفی، گره متصل بعدی را غیر فعال یا مهار (در صورتی که فعال بوده باشد) می کنند .]12[
2-10-4- تاریخچه شبکه‌های عصبی مصنوعی
از قرن نوزدهم به طور همزمان اما جداگانه از سویی نروفیزیولوزیست‌ها سعی کردند سامانه یادگیری و تجزیه و تحلیل مغز را کشف کنند و از سوی دیگر ریاضیدانان تلاش کردند تا مدل ریاضی بسازند که قابلیت فراگیری و تجزیه و تحلیل عمومی مسائل را دارا باشد. اولین کوشش‌ها در شبیه سازی با استفاده از یک مدل منطقی توسط مک کلوک و والتر پیتز انجام شد که امروزه بلوک اصلی سازنده اکثر شبکه‌های عصبی مصنوعی است. این مدل فرضیه‌هایی در مورد عملکرد نورون‌ها ارائه می‌کند. عملکرد این مدل مبتنی بر جمع ورودی‌ها و ایجاد خروجی است. چنانچه حاصل جمع ورودی‌ها از مقدار آستانه بیشتر باشد اصطلاحاً نورون برانگیخته می‌شود. نتیجه این مدل اجرای توابع ساده مثل AND و OR بود.
نه تنها نروفیزیولوژیست‌ها بلکه روان شناسان و مهندسان نیز در پیشرفت شبیه سازی شبکه‌های عصبی تاثیر داشتند. در سال ۱۹۵۸ شبکه پرسپترون توسط روزنبلات معرفی گردید. این شبکه نظیر واحدهای مدل شده قبلی بود. پرسپترون دارای سه لایه به همراه یک لایه وسط که به عنوان لایه پیوند شناخته شده می‌باشد، است. این سامانه می‌تواند یاد بگیرد که به ورودی داده شده خروجی تصادفی متناظر را اعمال کند.
سامانه دیگر مدل خطی تطبیقی نورون می‌باشد که در سال ۱۹۶۰ توسط ویدرو و هاف (دانشگاه استنفورد) به وجود آمد که اولین شبکه‌های عصبی به کار گرفته شده در مسائل واقعی بودند. آدالاین 49یک دستگاه الکترونیکی بود که از اجزای ساده‌ای تشکیل شده بود، روشی که برای آموزش استفاده می‌شد با پرسپترون فرق داشت.
در سال ۱۹۶۹ میسکی و پاپرت کتابی نوشتند که محدودیت‌های سامانه‌های تک لایه و چند لایه پرسپترون را تشریح کردند. نتیجه این کتاب پیش داوری و قطع سرمایه گذاری برای تحقیقات در زمینه شبیه سازی شبکه‌های عصبی بود. آنها با طرح اینکه طرح پرسپترون قادر به حل هیچ مساله جالبی نمی‌باشد، تحقیقات در این زمینه را برای مدت چندین سال متوقف کردند.
با وجود اینکه اشتیاق عمومی و سرمایه گذاری‌های موجود به حداقل خود رسیده بود، برخی محققان تحقیقات خود را برای ساخت ماشین‌هایی که توانایی حل مسائلی از قبیل تشخیص الگو را داشته باشند، ادامه دادند. از جمله گراسبگ که شبکه‌ای تحت عنوان آوالانچ 50را برای تشخیص صحبت پیوسته و کنترل دست ربات مطرح کرد. همچنین او با همکاری کارپنتر شبکه‌های ART را بنانهادند که با مدل‌های طبیعی تفاوت داشت. اندرسون و کوهونن نیز از اشخاصی بودند که تکنیک‌هایی برای یادگیری ایجاد کردند. ورباس در سال ۱۹۷۴ شیوه آموزش پس انتشار51 خطا را ایجاد کرد که یک شبکه پرسپترون چندلایه البته با قوانین نیرومندتر آموزشی بود.
پیشرفت‌هایی که در سال ۱۹۷۰ تا ۱۹۸۰ بدست آمد برای جلب توجه به شبکه‌های عصبی بسیار مهم بود. برخی فاکتورها نیز در تشدید این مساله دخالت داشتند، از جمله کتاب‌ها و کنفرانس‌های وسیعی که برای مردم در رشته‌های متنوع ارائه شد. امروز نیز تحولات زیادی در تکنولوژی ANN ایجاد شده‌است. ]14[
2-10-5- چرا از شبکه‌های عصبی استفاده می‌کنیم؟
شبکه‌های عصبی با توانایی قابل توجه خود در استنتاج نتایج از داده‌های پیچیده می‌توانند در استخراج الگوها و شناسایی گرایش‌های مختلفی که برای انسان‌ها و کامپیوتر شناسایی آنها بسیار دشوار است استفاده شوند. از مزایای شبکه‌های عصبی می‌توان موارد زیر را نام برد:
یادگیری تطبیقی: توانایی یادگیری اینکه چگونه وظایف خود را بر اساس اطلاعات داده شده به آن و یا تجارب اولیه انجام دهد در واقع اصلاح شبکه را گویند.
خود سازماندهی: یک شبکه عصبی مصنوعی به صورت خودکار سازماندهی و ارائه داده‌هایی که در طول آموزش دریافت کرده را انجام دهد. نورون‌ها با قاعدهٔ یادگیری سازگار شده و پاسخ به ورودی تغییر می‌یابد.
عملگرهای بی‌درنگ: محاسبات در شبکه عصبی مصنوعی می‌تواند به صورت



قیمت: تومان

دسته بندی : مقاله و پایان نامه

دیدگاهتان را بنویسید

دانشگاه علوم و فنون مازندران
دانشکده صنایع
ارزیابی عملکرد پالایشگاه های کشور با مدل ترکیبی تحلیل پوششی داده ها و شبکه های عصبی مصنوعی
پایان نامه جهت دریافت درجه کارشناسی ارشد
رشته صنایع ،گرایش صنایع
نام دانشجو :
سیده نجمه تختی
اساتید راهنما :
دکتر رضاییان ، دکتر تاجدین
زمستان 93
تقدیر و تشکر
به مصداق «من لم یشکر المخلوق لم یشکر الخالق » بسی شایسته است از استاد فرهیخته و فرزانه جناب آقای دکتر جواد رضاییان که با کرامتی چون خورشید ، سرزمین دل را روشنی بخشیدند و گلشن سرای علم و دانش را با راهنمایی های کار ساز و سازنده بارور ساختند ; تقدیر و تشکر نمایم.
( و یزکیهم و یعلمهم الکتاب و الحکمه )
معلما مقامت ز عرش برتر باد همیشه توسن اندیشه ات مظفر باد
به نکته های دلاویز و گفته های بلند صحیفه های سخن از تو علم پرور باد
همچنین از پدر و مادر عزیز ، دلسوز و مهربانم که آرامش روحی و آسایش فکری فراهم نمودند تا با حمایت های همه جانبه در محیطی مطلوب ، مراتب تحصیلی و نیز پایان نامه درسی را به نحو احسن به اتمام برسانم ; سپاسگزاری نمایم.
شکر خدا که هر چه طلب کردم از خدا بر منتهای همت خود کامران شدم
به پاس تعبیر عظیم و انسانی شان از کلمه ایثار و از خودگذشتگان
به پاس عاطفه سرشار و گرمای امیدبخش وجودشان که در این سردترین روزگاران بهترین پشتیبان است
به پاس قلب های بزرگشان که فریاد رس است و سرگردانی و ترس در پناهشان به شجاعت می گراید
و به پاس محبت های بی دریغشان که هرگز فروکش نمی کند.
با سپاس ازسه وجود مقدس
آنان که ناتوان شدند تا ما به توانایی برسیم…
موهایشان سپید شد تا ماروسفید شویم….
و عاشقانه سوختند تا گرمابخش وجود ما و روشنگر راهمان باشند….
پدرانمان
مادرانمان
استادانمان
چکیده :
کارایی و رتبه بندی زیرمجموعه های یک صنعت کاری ضروری است ، و لازم است حداقل سالی یکبار عملکرد آنها را برپایه اصول علمی مورد ارزیابی قرار داد.
صنعت نفت و گاز به عنوان یکی از اساسی ترین صنایع ایران از حساس ترین و مهمترین منابع درآمد دولت به شمار میرود .بدیهی است وجود کارایی در این صنعت عایدات دولت را چندین برابر مینماید و این مهم جز با ارزیابی دقیق و صحیح واحدها ی تحت پوشش میسر نمیشود .
از آنجایی که تحلیل پوششی داده ها کارایی متفاوتی در طول زمان ارائه میدهد و به هیچ پیش فرض اولیه ای درباره مرز کارایی نیاز ندارد لذا در میان تمام روشهای ارزیابی عملکرد ، DEA در سازماندهی و تحلیل داده ها بهترین روش است .بنابراین با جمع آوری اطلاعات ورودی و خروجی 6 پالایشگاه کشور کارایی آن ها را محاسبه کرده و واحدهای کارا و ناکارا شناسایی شدند.. اما DEA قادر به تفکیک کارایی همه ی پالایشگاه ها ازیکدیگرنیست . دلیل این موضوع کمبود تعداد واحدهای تصمیم گیرنده (6 پالایشگاه ) نسبت به تعداد ورودی و خروجی ها( 4 ورودی و 4 خروجی ). لذا DEA قادر به رتبه بندی کامل واحدها نیست، بنابراین از تلفیق تحلیل پوششی داده ها و شبکه عصبی مصنوعی به منظور اندازه گیری عملکرد واحدها ی تصمیم گیرنده استفاده شده است به نحوی که مشکل مذکور برطرف گردد. و در آخر مقایسه ای بین نتایج حاصل از این دو روش صورت گرفته است .
کلمات کلیدی :
کارایی ، ارزیابی عملکرد ، تحلیل پوششی داده ها ، شبکه عصبی ، پالایشگاه
فهرست مطالب
فصل اول1
کلیات تحقیق1
1-1- مقدمه2
1-2- تعریف مسأله3
1-3- اهداف اساسی از انجام تحقیق4
1-4- ضرورت انجام تحقیق4
1-5- فرضیات تحقیق5
1-6- جامعه آماری5
1-7- قلمرو تحقیق5
1-8- مراحل انجام تحقیق :5
فصل دوم7
مرور ادبیات و بررسی پیشینه ی تحقیق7
2-1- مقدمه8
2-2- تعاریف کارایی8
2-3- روش هاي اندازه گیري کارایی فنی9
2-3-1- روش هاي پارامتري9
2-3-2- روش هاي نا پارامتري9
2-4- مقایسۀ رگرسیون وتحلیل پوششی داده ها9
2-5- مفاهیم کارایی10
2-6- استفاده ازنسبت دراندازه گیري کارایی11
2-7- انواع مدل هاي پایه اي (کلاسیک) تحلیل پوششی داده ها :11
2-7-1- مدل CCR :12
2-7-2- مدل BCC17
2-7-3- مدل جمعی ( SBM= Slack Based Model )20
2-8- رتبه بندي واحد هاي کارا21
2-9- روش اندرسون – پیترسون 21
2-10- شبکه های عصبی مصنوعی ( ANNs ) 22
2-10-1- مقدمه23
2-10-2- شبکه عصبی23
2-10-3- معرفی شبکه عصبی مصنوعی24
2-10-4- تاریخچه شبکه‌های عصبی مصنوعی24
2-10-5- چرا از شبکه‌های عصبی استفاده می‌کنیم؟25
2-10-7- ساختار شبکه‌های عصبی26
2-10-8- تقسیم بندی شبکه‌های عصبی27
2-10-9- کاربرد شبکه‌های عصبی28
2-10-10- معایب شبکه‌های عصبی28
2-10-11- مسائل مناسب برای یادگیری شبکه های عصبی28
2-11- یادگیری یک پرسپترون29
2-11-1- آموزش پرسپترون31
2-11-2- الگوریتم یادگیری پرسپترون31
2-12- مقایسه آموزش یکجا و افزایشی32
2-13- شبکه های چند لایه32
2-14- الگوریتم Back propagation33
2-15- شبکه های عصبی چند لایه پیش خور37
2-16- انواع شبکه های عصبی :38
2-16-1- شبکه عصبی پرسپترون39
2-16-2- شبکه همينگ40
2-16-3- شبکه هاپفيلد41
2-16-4- شبکه عصبی خود سازمانده مدل کوهنن42
2-16-5- شبکه عصبی تأ خير زمانی42
2-17- مدل ترکیبی شبکه های عصبی مصنوعی و تحلیل پوششی داده ها (NEURO/DEA )43
2-17-1- مقدمه44
2-17-2- الگوریتم تحلیل کارایی46
2-17-3- نرمال سازی داده ها46
2-18- مفاهیم کارایی ، بهره وری و اثربخشی49
2-19- مروری بر مطالعات انجام شده50
فصل سوم62
روش تحقیق62
3-1- مقدمه63
3-2- روش تحقیق63
3-3- جامعه آماری64
3-4- شیوه گردآوری اطلاعات64
3-5- مراحل انجام تحقیق64
3-6- شیوه نرمال سازی65
3-7- ارزیابی و تحلیل کارایی فنی پالایشگاه های گاز کشور با رویکرد تحلیل پوششی داده ها (DEA )65
3-7-1- مدل سازی ریاضی66
3-7-2- مدل مضربی CCR ورودی محور66
3-7-3- روش اندرسون – پیترسون بر ای رتبه بندی واحدهای کارا67
3-8- دلایل استفاده از مدل مضربی CCR ورودی محور در مقایسه با مدل BCC67
3-9- روش تحقیق مورد استفاده در تحلیل کارایی با مدل های ترکیبی Neuro/DEA68
3-9-1- مدل مورد استفاده در تحقیق69
3-9-2- روش به کار گرفته شده در مدل های ترکیبی Neuro/DEA1 و Neuro/DEA2 جهت ارزیابی واحد ها70
فصل چهارم71
نتایج و تفسیر آن ها71
4-1- مقدمه72
4-2- نرمالیز کردن داده ها73
4-3- الگوریتم پس انتشار77
4-4- شبکه پیش سو 78
4-5- جمع آوری داده ها : Neuro – DEA78
4-6- نرمال سازی داده ها Neuro /DEA79
4-7- داده های آموزش80
4-8- داده های تست80
4-9- عملیات آموزش82
4-10- نمایش نمودارها84
فصل پنجم87
نتیجه گیری و پیشنهادات87
5-1- محدودیت های انجام تحقیق88
5-2- نتیجه گیری88
5-3- تحقیقات آتی89
منابع و مراجع90
منابع فارسی91
منابع انگلیسی93
فهرست اشکال
شکل 1-1- مقایسه رگرسیون و DEA …………………………………………………………………………………………..9
شکل 2-1- پرسپترون تک لایه ……………………………………………………………………………………………………29
شکل 2-2- پرسپترون ………………………………………………………………………………………………………………..30
شکل 2-3- توابعی که پرسپترون قادر به یادگیری آن ها می باشد …………………………………………………..30
شکل 2-4- مقایسه آموزش افزایشی و یکجا …………………………………………………………………………………..32
شکل 2-5- منحنی یادگیری …………………………………………………………………………………………………………35
شکل 2-6- نمودار خطا …………………………………………………………………………………………………………………36
شکل 2-7- شرط پایان الگوریتم BP …………………………………………………………………………………………….36
شکل 2-8- پرسپترون تک لایه ……………………………………………………………………………………………………39
شکل 2-9- پرسپترون تک لایه …………………………………………………………………………………………………..39
شکل 2-10- شبکه همینگ ………………………………………………………………………………………………………..40
شکل 2-11- شبکه هاپفیلد …………………………………………………………………………………………………………41
شکل 2-12- شبکه کوهنن……………………………………………………………………………………………………………42
شکل 2-13- ساختار نرون در شبکه TDNN ………………………………………………………………………………….43
شکل 2-14- الگوریتم تحلیل کارایی ……………………………………………………………………………………………..48
شکل 2-15- شبکه پرسپترون سه لایه ………………………………………………………………………………………….70
شکل 3-1- ورودی و خروجی های پالایشگاه ها ……………………………………………………………………………….78
شکل 4-1- تابع سیگموئیدی …………………………………………………………………………………………………………84
شکل 4-2- مقایسه خروجی های شبیه سازی شده …………………………………………………………………………..85
شکل 4-3- مقایسه خروجی ها با داده های تست ……………………………………………………………………………..86
شکل 4-4- مقایسه کارایی مدل DEA و ANN ………………………………………………………………………………..86
فهرست جدول
جدول 2-1- مدل جمعی ……………………………………………………………………………………………………….20
جدول 3-1- معرفی پالایشگاه ها ……………………………………………………………………………………………..65
جدول 3-2- مشخصه های متغیرهای تصمیم ……………………………………………………………………………..66
جدول 3-3- مشخصه های متغیرهای تصمیم …………………………………………………………………………….66
جدول 3-4- مشخصه های متغیرهای تصمیم …………………………………………………………………………….66
جدول 4-1- اطلاعات ورودی و خروجی سال 93 ……………………………………………………………………….72
جدول 4-2- اطلاعات ورودی و خروجی سال 92………………………………………………………………………..73
جدول 4-3- داده های نرمال شده سال 93 ………………………………………………………………………………..74
جدول 4-4- داده های نرمال شده سال 92 ………………………………………………………………………………..74
جدول 4-5- کارایی واحدها در سال 92 و 93 …………………………………………………………………………….75
جدول 4-6- کارایی AP در سال 92…………………………………………………………………………………………….75
جدول 4-7- کارایی AP در سال 93…………………………………………………………………………………………….75
جدول4-8- ورودی ANN در سال 92…………………………………………………………………………………………..79
جدول4-9- ورودی ANN در سال 93…………………………………………………………………………………………..79
جدول 4-10- نرمال سازی داده ها ………………………………………………………………………………………………79
جدول 4-11- داده های نرمال شده ………………………………………………………………………………………………80
جدول 4-12- اندیس های مربوط به آموزش ………………………………………………………………………………….81
جدول 4-13- اندیس های مربوط به تست …………………………………………………………………………………….81
جدول 4-14- داده های ورودی و خروجی آموزش ………………………………………………………………………….81
جدول 4-15- داده های ورودی و خروجی تست ……………………………………………………………………………..82
جدول 4-16- ارزیابی شبکه آموزش دیده ……………………………………………………………………………………..82
جدول 4-17- صحت فرایند آموزش ………………………………………………………………………………………83
جدول 4-18- خروجی شبیه سازی شده و واقعی برای تست …………………………………………………….83
جدول 4-19- میانگین مربعات خطا ……………………………………………………………………………………..83
جدول 4-20- میانگین مقایسه کارایی خروجی ANN و DEA سال 92 …………………………………….85
جدول 4-21- میانگین مقایسه کارایی خروجی ANN و DEA سال 93 …………………………………….85
فصل اول
کلیات تحقیق
1-1- مقدمه
اندازه گیری کارایی1 به خاطر اهمیت آن در ارزیابی عملکرد2 یک شرکت یا سازمان همواره مورد توجه محققین قرار داشته است . در سال 1957 فارل با استفاده از روشی مانند اندازه گیری کارایی در مباحث مهندسی اقدام به اندازه گیری کارایی برای یک واحد تولیدی نمود .موردی که فارل برای اندازه گیری کارایی مد نظر قرار داده بود شامل یک ورودی و یک خروجی بود . مطالعه فارل شامل اندازه گیری “کارایی های فنی ” و ” تخصیصی ” و ” مشتق تابع تولید کارا ” بود . فارل مدل خود را برای تخمین کارایی بخش کشاورزی آمریکا نسبت به سایر کشورها مورد استفاده قرار داد. با این وجود او در ارائه روشی که در برگیرنده ورودی ها و خروجی های متعدد باشد ، موفق نبود .]1[
“چارنز3 ” ، ” کوپر4 ” ، ” رودز5 ” دیدگاه فارل را توسعه داده و مدلی را ارائه کردند که توانایی اندازه گیری کارایی با چندین ورودی و چندین خروجی را داشت . این مدل تحت عنوان ” تحلیل پوششی داده ها 6 ” نام گرفت و ایتدا در رساله دکتری ” ادوارد رودز ” و به راهنمایی ” کوپر ” تحت عنوان ” ارزیابی پیشرفت تحصیلی دانش آموزان مدارس ملی آمریکا ” در سال 1976 در دانشگاه کارنگی مورد استفاده قرار گرفت و در سال 1978 در مقاله ای تحت عنوان ” اندازه گیری کارایی واحدهای تصمیم گیرنده 7 ” ارائه شد .
از آنجا که این مدل توسط ” چارنز ” ، ” کوپر ” و ” رودز ” ارائه گردید به مدل CCR که از حروف اول نام سه فرد فوق تشکیل شده است معروف گردید . هدف در این مدل اندازه گیری و مقایسه کارایی نسبی واحدهای سازمانی مانند مدارس ، بیمارستان ها ، شعب بانک ، شهرداری ها و … که دارای چندین ورودی و خروجی شبیه بهم باشند .]2[
کاربرد گاز طبیعی به عنوان سوخت حرارتی تنها قسمتی از موارد متنوع کارایی این ماده گرانقدر به شمار می رود .اهمیت اصلی و واقعی گاز طبیعی با توجه با ارزش افزوده فراوان و قابلیت تبدیل به هزاران نوع کالای با ارزش اقتصادی در بخش صنعت و پتروشیمی ظاهر می شود .
نیاز روزافزون به گاز برای تامین انرژی و سوخت و همینطور ارز حاصل از فروش و صادرات برای سرمایه گذاری و راه اندازی صنایع مادر و زیربنایی کشور ، اندیشه تمرکز بخشیدن فعالیت های مرتبط با صنعت گاز را تقویت کرده و در این رابطه طبق اساسنامه قانونی ، شرکت ملی گاز ایران به عنوان یکی از چهار شرکت وابسته به وزارت نفت ایران با سرمایه اولیه 25 میلیارد ریال در سال 1344 هجری شمسی تأسیس گردید .
در این میان پالایشگاه های گاز نقش بسیار مهمی در فرآیند تصفیه گاز ، تولید محصولات جانبی ، تأمین گاز کشور و درآمد حاصل از فروش و صادرات آن به عهده دارند . ظرفيت پالايش و نم زدائي گاز طبيعي ايران با برخورداري از متوسط رشد سالانه 9 درصدي در دهه اخير در سال 1391 به 428 ميليون متر مكعب در روز رسیده است . با توجه به تمركز قابل ملاحظه ميادين گاز كشور در مناطق جنوبي امكانات پالايشي و نم زدائي كشور نيز عمدتا در اين ناحيه مستقر مي باشند. پالايشگاه بيد بلند با ظرفيت 22.5 ميليون متر مكعب در روز پالايشگاه فجر با ظرفيت 110 ميليون متر مكعب در روز و پالايشگاه سرخون با ظرفيت 7.1 ميليون متر مكعب ظرفيت نم زدائي در مناطق جنوبي و پالايشگاه شهيد هاشمي نژاد با ظرفيت 44.5 ميليون متر مكعب در روز در شمال شرق كشور از جمله مهمترين تاسيسات پالايشي كشور به شمار مي روند.
بدیهی است که ایجاد یک نظام کارا و استفاده بهینه از منابع باعث جلوگیری از هرز رفت مبالغ عظیمی از منابع مادی و معنوی می گردد به طوری که می تواند با درصد کمی افزایش در کارایی صرفه جویی زیادی حاصل گردد.لذا مطالعه سطح بهره وری پالایشگاه های گاز کشور کاملا ضروری است .برای رسیدن به این هدف لازم است ابتدا عملکرد8 پالایشگاه های گاز مورد ارزیابی و تحلیل قرار گرفته و سپس پالایشگاههایی که کارا نیستند مشخص و علل عدم کارایی آن ها را تعیین و نسبت به رفع آن اقدام نمود .
به عنوان یک اصل عملکرد هر واحد سازمانی و یا سازمان تا آنجا که میسر است باید اندازه گیری شود . وجود و یا عدم وجود نظام ارزیابی عملکرد موثر9 و کارآمد با مرگ سازمان رابطه ی مستقیم دارد و فقدان آن را به عنوان بیماری سازمانی قلمداد نموده اند . بدون اندازه گیری ، مبنایی برای قضاوت و اظهارنظر و ارزیابی وجود نخواهد داشت آن چه را که نتوان ارزیابی نمود نمیتوان به خوبی اداره کرد . هر سازمانی برای اعمال مدیریت صحیح باید از الگوهای علمی ارزیابی عملکرد بهره گیرد تا بتواند میزان تلاش و نتایج حاصل از کارکرد خود را مورد سنجش قرار دهد . تنوع وظایف سازمانی اعم از وظایف عمومی و اختصاصی به پیچیدگی ارزیابی آن ها می افزاید و استفاده از ابزارهای کارامد علمی را برای محقق ساختن یک ارزیابی واقعی از هر دو بعد عملکردی و سیاست گذاری اجتناب ناپذیر می کند . یکی از ابزار های کارامد که این مهم را محقق ساخته تحلیل پوششی داده هاست که چهارچوب نظام ارزیابی عملکرد با استحکامی را در خود تدارک می بیند .
لذا در نظر است مقایسه ای بین عملکرد پالایشگاه های گاز کشور انجام گیرد و از میان آن ها پالایشگاه های با کارایی بالاتر را انتخاب نمود . مضافاٌ این که می توان آن ها را به عنوان واحدهای کارا و ناکارا دسته بندی کرد و در صورت امکان برای واحدهای ناکارا راه حل مناسب ارائه نمود .]15[
1-2- تعریف مسأله
یکی از عمده ترین مشکلات استفاده از ” تحلیل پوششی داده ها ” ضعف قدرت تفکیک پذیری برای ” واحد های تصمیم گیرنده ” است . این مشکل عمدتاٌ به علت کم بودن تعداد واحد ها در مقایسه با تعداد ورودی ها و خروجی ها ی مدل می باشد . این مشکل در ارزیابی عملکرد 6 پالایشگاه گاز کشور با توجه به تعداد زیاد ورودی ها10 و خروجی های11 هر پالایشگاه گاز به خوبی خود را نمایان می کند .بر این اساس و برای رفع این اشکال مدل تلفیقی از شبکه های عصبی مصنوعی12 و تحلیل پوششی داده ها در این تحقیق مورد استفاده قرار گرفته است که موجب افزایش قدرت تفکیک پذیری مناسب پالایشگاه ها 13شد .
ارزیابی عملکرد شرکت ها همواره از مسأله های چالش برانگیز در حوزه ی های مدیریت بوده است . اندازه گیری کارایی خصوصا در دو دهه ی اخیر ، به علت اهمیت آن در ارزیابی عملکرد ، مورد توجه زیادی قرار گرفته است . از سال 1957 که فارل روشی را برای اندازه گیری کارایی مطرح کرد تا کنون بازنگری های جامع و اساس در موضوع اندازه گیری کارایی صورت گرفته است .همچنین دیدگاه های پارامتری و غیر پارامتری به طور گسترده ای در ارزیابی کارایی مورد استفاده قرار می گیرند .ضمن اینگه دیدگاه های اولیه عمدتاٌ شامل مرزهای قطعی و مرزهای تصادفی بوده و بعدها دیدگاه هایی مثل DEA و FDH نیز مطرح شده است .
روش های بسیاری برای اندازه گیری کارایی در تحقیقات مربوط مطرح شده است .اما در مقایسه ی بین تمامی مدل های فوق ، DEA14 روش بهتری برای سازماندهی و تحلیل داده هاست . زیرا اجازه می دهد که کارایی در طول زمان تغییر کند و به هیچ گونه پیش فرضی در مورد مرز کارایی نیاز ندارد . با این وجود مرز کارایی که از DEA حاصل شده نسبت به اغتشاش آماری و داده های پرت که در اثر خطای اندازه گیری یا هر عامل خارجی دیگر ایجاد شود ، حساس است و اگر در داده ها اغتشاش آماری یا داده های پرت وجود داشته باشد ممکن است موجب شود تا مرز کارایی به دست آمده جا به جا شود و مسیر تحلیل های DEA را منحرف سازد . وجود این مسأله باعث شده است که اخیراٌ شبکه های عصبی مصنوعی به عنوان جایگزین خوبی برای برآورد مرزهای کارا جهت تصمیم گیری به کار گرفته شود . ] 2 [
لذا در این پژوهش سعی شده است معیار های ارزیابی عملکرد پالایشگاه های گاز کشور تعیین و با استفاده از مدل ترکیبی Neuro-DEA با اندازه گیری کارایی و تعیین پالایشگاه های کارا و ناکارا و کمک به بهینه سازی شرکت ملی گاز ایران از طریق نظام ارزیابی عملکرد و رتبه بندی پالایشگاه های گاز کشور کمک نمود .
1-3- اهداف اساسی از انجام تحقیق
هدف اولیه این تحقیق طراحی و تبیین مدل ارزیابی عملکرد و کارایی پالایشگاه های گاز کشور می باشد . از دیگر اهداف تحقیق می توان به موارد زیر اشاره کرد :
تعیین معیارهای ارزیابی عملکرد پالایشگاه های گاز کشور
اندازه گیری کارایی پالایشگاه های گاز کشور و تعیین شرکت های کارا 15و ناکارا 16
کمک به بهینه سازی شرکت ملی گاز ایران از طریق نظام ارزیابی عملکرد و رتبه بندی پالایشگاه های گاز کشور
1-4- ضرورت انجام تحقیق
با توجه به اهمیت کارایی در پیشبرد جوامع و جایگاهی که در میان سایر علوم به خود اختصاص داده است بررسی همه جانبه آن ، به ویژه تحلیل ابعاد ریاضی آن به عنوان معیاری برای سنجش عملکرد ضرورتی اجتناب ناپذیر می باشد .
لذا محاسبه کارایی ، ارزیابی و رتبه بندی تمام شعب و ادارات زیر مجموعه یک خدمت یا صنعت ، کاری ضروری است ، و لازم است حداقل سالی یکبار عملکرد آن ها را بر پایه اصول علمی مورد ارزیابی قرار داد .
صنعت نفت و گاز به عنوان یکی از اساسی ترین صنایع ایران از حساس ترین و مهم ترین منابع درآمد دولت به شمار می رود . بدیهی است وجود کارایی مناسب در این صنعت عایدات دولت را چندین برابر می نماید و این مهم جز با ارزیابی دقیق و صحیح واحدهای تحت پوشش میسر نمی شود .
1-5- فرضیات تحقیق
از آنجایی که هدف ارزیابی عملکرد و کارایی پالایشگاه های گاز کشور با مدل ترکیبی Neuro /DEA یا برخی تکنیک های آماری می باشد لذا این تحقیق فاقد فرضیه می باشد .] 2 [
1-6- جامعه آماری
جامعه آماری این پژوهش ، پالایشگاه های گاز کشور (6 پالایشگاه ) که در حال حاضر در کشور در حال فعالیت هستند .
1-7- قلمرو تحقیق
1-7-1- قلمرو موضوعی :
قلمرو موضوعی تحقیق در حوزه ارزیابی عملکرد بر مبنای مدل های DEA و شبکه عصبی می باشد .
1-7-2- قلمرو مکانی :
قلمرو مکانی تحقیق پالایشگاه های گاز کشور می باشد که در حال حاضر 7 پالایشگاه در سطح کشور مشغول به فعالیت هستند .
1-7-3- قلمرو زمانی :
در این تحقیق ، اطلاعات جمع آوری شده پالایشگاه های کشور در اردیبهشت ماه سال های 92 و 93 مینای ارزیابی عملکرد قرار گرفته است .
1-8- مراحل انجام تحقیق :
مطالعات کتابخانه ای در مورد موضوع تحقیق
تعیین شاخص های ورودی و خروجی پژوهش از طریق نظر خبرگان
مطالعه علمی روی مدل ها و تکنیک های ارزیابی و اندازه گیری کارایی
انتخاب مدل و رویکرد مناسب جهت بررسی و اندازه گیری کارایی پالایشگاه های گاز کشور
طراحی مدل های پارامتری و اندازه گیری کارایی پالایشگاه های مورد نظر
اندازه گیری کارایی پالایشگاه ها با روش DEA و Neuro-DEA
مقایسه ی نتایج حاصل از این دو روش
فصل دوم
مرور ادبیات و بررسی پیشینه ی تحقیق
2-1- مقدمه
همانطور که قبلاٌ گفته شد ، باید در استفاده از DEA17 برای ارزیابی عملکرد سایر واحدهای تصمیم گیرنده احتیاط کرد . وجود این مسأله باعث شده است که اخیراٌ شبکه های عصبی مصنوعی18 به عنوان جایگزین خوبی برای برآورد مرزهای کارا جهت تصمیم گیری به کار گرفته شود .زیرا ماهیت عملکرد شبکه های عصبی به دلیل قدرت یادگیری و تعمیم پذیری به گونه ای است که در برابر داده های پرت و اغتشاشات حاصل از اندازه گیری غیر دقیق داده ها مقاوم تر عمل می کنند .در زیر مختصری راجع به تحلیل پوششی داده ها و شبکه های عصبی مصنوعی می پردازیم . ]2[
2-2- تعاریف کارایی19
2-2-1- تعریف کارایی اقتصادي
کارایی اقتصادي عبارت است از نسبت میزان محصول تولیدي قابل استفاده به میزان منابع تولیدي که براي ساخت آن محصول به کار گرفته شده است.(کارایی برحسب میزان محصول)
کارایی هرسیستم برحسب ارزش محصول به دست آمده درازاي ارزش هرواحد از منابع تولید به کار رفته اندازه گیري می شود. (کارایی برحسب قیمت وارزش )
کارایی اقتصادي دریک موسسۀ تولیدي متضمن حل دو مسئلۀ ” انتخاب ترکیب مناسبی ازمنابع تولیدي” و ” انتخاب روش وطریقۀ تولید” است .]5[
2-2-2- تعریف کارایی فنی وتخصیصی
همان گونه که در تعاریف بالا ملاحظه می شود، کارایی اقتصادي شامل دوجزء کارایی فنی وکارایی اقتصادي می باشد. فارل20 کارایی اقتصادي را شامل دوجزء زیر تعریف می کند:
1- کارایی فنی منعکس کنندة توانایی یک بنگاه در به دست آوردن حد اکثر خروجی از ورودي هاي به کار گرفته شده است.
2- کارایی تخصیصی منعکس کنندة توانایی یک بنگاه براي استفادة از ورودي ها به نسبت بهینه با توجه به قیمت و فناوري تولید است.
ترکیب دو کارایی فنی وتخصیصی را ، کارایی اقتصادي می نامند . ]9[
2-3- روش هاي اندازه گیري کارایی فنی
به طورکلی دراندازه گیري کارایی بنگاه ها( واحد ها ) دوروش عمده براي اندازه گیري کارایی وجوددارد. یکی روش هاي پارامتري ودیگري روش هاي ناپارامتري .
2-3-1- روش هاي پارامتري21
درروش پارامتري با استفاده از روش هاي مختلف آماري واقتصاد سنجی تابع تولید مشخصی تخمین زده می شود. سپس با به کارگیري این تابع نسبت به تعیین کارایی اقدام می شود. روش رگرسیون22 از جمله روش هاي پارامتري است.
2-3-2- روش هاي نا پارامتري
روش هاي ناپارامتري به تخمین تابع تولید نیاز ندارند. ازجمله روش هاي ناپارامتري تحلیل پوششی داده ها است ،که کارایی نسبی واحد ها را درمقایسه با یکدیگر مورد ارزیابی قرار می دهد. دراین روش به شناخت شکل تابع تولید نیازي نیست و محدودیتی درتعداد ورودي ها و خروجی ها وجود ندارد. ]9[
2-4- مقایسۀ رگرسیون وتحلیل پوششی داده ها
روش رگرسیون میانگین مشاهدات مربوط به واحدها را تعیین وعملکرد هر واحدرا نسبت به یک معادلۀ رگرسیون بهینه شده ، مشخص می کند. تحلیل پوششی داده ها از تمامی مشاهدات گردآوري شده براي اندازه گیري کارایی استفاده کرده وهرکدام از مشاهدات را درمقایسه با مرز کارا سنجیده وآن را بهینه می نماید. روش تحلیل پوششی داده ها باترکیب تمامی واحد هاي تحت بررسی، یک واحد مجازي بابالاترین کارایی را می سازد وواحد هاي نا کارا را با آن مقایسه می کند. شکل زیر تفاوت این دو روش را نشان می دهد .]1[
شکل 1 -1- مقایسه رگرسیون و تحلیل پوششی داده ها
2-5- مفاهیم کارایی
2-5-1- تعریف کارایی
کارایی میزان بهره وري23 یک سازمان از منابع خود درعرصۀ تولید نسبت به بهترین عملکرد در مقطعی از زمان است. کارایی با نسبت خروجی واقعی به خروجی مورد انتظار تعریف می شود، یعنی :
2-5-2- انواع کارایی ها :
کارایی درانواع زیر تعریف می شوند:
2-5-2-1- کارایی فنی :
کارایی فنی میزان تبدیل ورودي هایی مانند نیروي انسانی وماشین آلات به خروجی ها، درمقایسه با بهترین عملکرد است.
کارایی فنی نشان دهندة میزان توانایی یک بنگاه براي حداکثر کردن میزان تولید با توجه به منابع وعوامل مشخص شدة تولید است. درتحلیل پوششی داده ها کارایی فنی با نسبت مجموع موزون خروجی ها به ورودي ها تعریف می شود. دراقتصاد زمانی یک بنگاه را به لحاظ فنی کارا می دانند که مقدار تولید آن برروي منحنی تولید یکسان قرار گیرد.
2-5-2-2- کارایی تخصیصی
کارایی تخصیصی بر تولید بهترین ترکیب محصولات با استفاده از کم هزینه ترین ترکیب ورودي ها دلالت می کند. درواقع کارایی تخصیصی به این پرسش پاسخ می دهد که آیا قیمت ورودي هاي مورد استفاده به گونه اي هست که هزینۀ تولید را حداقل نماید.
2-5-2-3- کارایی ساختاري
کارایی ساختاري معمولا براي یک صنعت تعریف می شود. کارایی ساختاري یک صنعت از متوسط وزنی کارایی شرکت هاي مختلف آن صنعت به دست می آید. با استفاده از معیار هاي کارایی ساختاري می توان کارایی صنایع مختلف با محصولات متفاوت را با هم مقایسه نمود.
2-5-2-4- کارایی مقیاس
کارایی مقیاس یک واحد ازنسبت کارایی مشاهده شدة آن واحد به کارایی درمقیاس بهینه (به کارایی واحدي که بهترین کارایی را دارد) به دست می آید . هدف این کارایی ، تولید درمقیاس بهینه است . ]1[
2-6- استفاده ازنسبت دراندازه گیري کارایی
همان گونه که درمفهوم کارایی بیان شد ، کارایی به صورت نسبت خروجی به ورودي به صورت زیرتعریف می شود :
با توجه به رابطۀ فوق براي بهبود کارایی یک بنگاه یا واحد صنعتی پنج روش زیر وجود دارد:
الف- افزایش ورودي وبه دست آوردن خروجی بیشتر
ب – ثابت نگه داشتن ورودي وافزایش خروجی
ج- کاهش ورودي وکاهش کمتر خروجی
د- کاهش ورودي وثابت نگه داشتن خروجی
ه- کاهش ورودي وافزایش خروجی
نسبت فوق درمقایسۀ کارایی واحد هایی که فقط ازیک ورودي ویک خروجی استفاده می کنند، آسان است. ولی این گونه واحد ها درعمل بسیار نادرند. عموما واحد ها ازتعداد زیادي ورودي وخروجی استفاده می کنند. ]1[
2-7- انواع مدل هاي24 پایه اي (کلاسیک) تحلیل پوششی داده ها :
تحلیل پوششی داده ها داراي مدل هاي پایه اي به شرح زیراست:
مدل CCR 25
مدل BCC 26
مدل جمعی SBM 27
که درزیر به تشریح هریک آن ها پرداخته می شود.
2-7-1- مدل CCR :
مدل CCR دریک دسته بندي کلی به فرم کسري وفرم خطی تقسیم می شود . مدل CCR در فرم خطی به مدل CCR ورودی محور28 و مدل CCR خروجی محور29 تقسیم می شود .
مدل CCR ورودي محور خود در سه فرم کسري، مضربی، وپوششی طبقه بندي می گردد .
مدل CCR خروجی محور نیز داراي فرم هاي مضربی وپوششی می باشد.
در زیر انواع فرم های CCR تشریح می شوند :
2-7-1-1- مدل CCR در فرم کسری
اگر هدف ، بررسی کارایی n واحد تصمیم گیرنده یا DMU 30 باشد که هر واحد دارای m ورودی و s خروجی به صورت زیر باشند :
می باشد . کارایی واحد j ام به صورت زیر محاسبه می شود :

که ur و vi به ترتیب وزن های خروجی و ورودی واحد j ام می باشند .
برای ساختن مدل ، فرض کنید n واحد تصمیم گیرنده (DMU) موجود است و هدف ارزیابی واحد تحت بررسی ( واحد صفر یا واحد تصمیم گیرنده31 ) است ، که ورودی های x10 ، x20 ، … و xm0 را برای تولید y10 ، y20 ، و … ys0 به مصرف می رساند .
حال براي واحد صفر ، یک واحد مجازي می سازیم که ورودي وخروجی آن به صورت زیر است:
(2)
(3)
که vi وزن های ورودی و ur وزن های خروجی واحد مجازی است ، که در واقع متغیرهای تصمیم مدل بوده و هدف تعیین آن هاست . ]1[
حال می خواهیم مقادیر vi و ur را برای واحد مجازی صفر ( واحد تحت بررسی ) طوری انتخاب کنیم که کارایی آن ماکسیمم شود ، یعنی :

در مدل فوق اگر ur ها خیلی بزرگ و vi ها خیلی کوچک باشند ، آنگاه مقدار نسبت ها می تواند نامحدود وبی نهایت گردد. براي جلوگیري از ایجاد چنین مشکلی تمامی نسبت ها (کارایی همۀ واحدها) را کوچکتر یا مساوي یک درنظر می گیرند وبه عنوان محدودیت وارد مدل می کنند. با توجه به توضیحات فوق مدل کلی CCR در فرم کسری به صورت زیر در می آید :

2-7-1-2- مدل CCR در فرم خطی
برای تبدیل مدل کسری CCR ، به یک مدل برنامه ریزي خطی ، چارنز، کوپر و رودز دو شیوه ، را به کار گرفته اند. درشیوة اول مخرج کسر را ثابت درنظر گرفته وصورت آن را حد اکثر می نمایند. مدل حاصل از این شیوه را مدل ورودي محور (نهاده گرا) می نامند. درشیوة دوم صورت کسر را ثابت نگهداشته ومخرج آن را حد اقل می کنند. مدل حاصل از این شیوه را مدل خروجی محور (ستاده گرا) می گویند.]1[
2-7-1-3- مدل CCR ورودی محور
مدل هاي ورودي محور دریک تقسیم بندي به دو گروه مدل هاي مضربی ومدل هاي پوششی تقسیم می شوند، که درادامه به تشریح آن ها می پردازیم.
2-7-1-4- مدل مضربی32 CCR ورودی محور
دراین روش براي تبدیل مدل نسبت CCR به مدل برنامه ریزي خطی ، مخرج کسر را معادل یک، قرار می دهیم وصورت کسر را ماکسیمم می نماییم. بدین ترتیب مدل به صورت زیر درمی آید:
2-7-1-5- مدل پوششی33 CCR ورودی محور
قبلا مدل مضربی CCR ورودی محور به صورت زیر ارائه گردید :
درمدل فوق براي هر واحد تصمیم گیرنده، باید یک محدودیت (قید) نوشته شود. به این ترتیب ، یک مدل برنامه ریزي خطی به دست خواهد آمد که تعداد محدودیت هاي آن از تعداد متغیر هایش بیشتر است. ازآن جا که حجم عملیات در روش سیمپلکس براي حل مسایل برنامه ریزي خطی بیشتر وابسته به تعداد محدودیت ها است تا تعداد متغیرها . به همین دلیل از مدل دوگان34 (ثانویه) مسئلۀ فوق استفاده می شود که نیازمند حجم عملیات کمتري است.
براي تبدیل مدل اولیۀ فوق به مدل دوگان ، متغیر متناظر با محدودیت (1 ) را درمسئلۀ دوگان با θ و متغیر هاي متناظر با محدودیت هاي ( 2 ) را با jλ نشان می دهیم. مدل ثانویه (دوگان) به صورت زیر در خواهد آمد :
مدل فوق با تغییر اندکی به صورت زیر در می آید. این مدل رافرم پوششی مدل CCR ورودی محور می نامند .
دقت کنید که در مدل اولیه ، m ورودی و s خروجی و n واحد تصمیم گیرنده وجود داشت ، که براساس آن مسأله دوگان دارای (m+1 ) متغیر است که تعداد محدودیت های آن کمتر از مسأله اولیه و در نتیجه حل آن مستلزم حجم عملیات کمتری است . مدل پوششی همان دوگان مدل اولیه است .
2-7-1-6- مدل CCR خروجی محور35
دریک مدل خروجی محور ، یک واحد درصورتی ناکارا است که امکان افزایش هر یک از خروجی ها بدون افزایش یک ورودي یا کاهش یک خروجی دیگر وجود داشته باشد.
مدل نسبت ( کسری ) CCR را که درابتدا توضیح داده شد، دوباره به شرح زیر می نویسیم:

در مدل CCR خروجی محور، براي خطی کردن مدل غیرخطی36 فوق صورت کسر را برابر 1 می گیرند ومخرج آن را می نیمم می کنند. بدین ترتیب مدل ها به صورت زیر در می آیند:
2-7-1-7- مدل مضربی CCR خروجی محور
2-7-1-8- مدل پوششی CCR خروجی محور
برای ساختن مدل پوششی CCR خروجی محور ، دوگان مدل مضربی CCR خروجی محور را با قرار دادن θ و jλ به عنوان متغیر هاي دوگان متناظر با محدودیت اول ومحدودیت هاي دوم به صورت زیر به دست می آوریم:
هدف ما کسب بیشترین مقدار خروجی است . در این مدل 1 < θ است و 1/θ میزان کارایی را نشان می دهد .]1[
2-7-2- مدل BCC
بنکر، چارنز وکوپر باتغییر درمدل CCR ، مدل جدیدي را عرضه کردند که بر اساس حروف اول نام خانوادگی آنان به مدل BCC شهرت یافت . این مدل از انواع مدل هاي تحلیل پوششی داده ها است که به ارزیابی کارایی نسبی واحدهایی با بازده متغیر نسبت به مقیاس می پردازد. مدل هاي بازده به مقیاس ثابت محدود کننده تر از مدل هاي بازده به مقیاس متغیر هستند، زیرا مدل بازده به مقیاس ثابت واحد هاي کاراي کمتري را در برمی گیرد ومقدار کارایی نیز کمتر می شود.
بازده به مقیاس37
بازده به مقیاس مفهومی است بلند مدت ، که منعکس کنندة نسبت افزایش درخروجی به ازاي افزایش درمیزان ورودي ها است. این نسبت می تواند ثابت ، افزایشی یا کاهشی باشد.
: 38CRSبازدة ثابت به مقیاس: بازده به مقیاس ثابت نسبت بازدة ثابت به مقیاس وقتی صادق است که افزایش در ورودي به همان نسبت باعث افزایش درخروجی شود. به عنوان مثال اگر نیرویکار وسرمایه دو برابر شود، میزان محصول هم دو برابر گردد.
IRS 39 بازده افزایشی به مقیاس : بازدة افزایشی نسبت به مقیاس آن است که میزان خروجی به نسبتی بیش از میزان افزایش در ورودي ها ، افزایش یابد.
40DRS بازدة کاهشی به مقیاس : درصورتی که میزان افزایش در خروجی ها کمتر از نسبتی باشد که ورودي ها افزایش می یابند، بازده به مقیاس کاهشی ایجاد می شود.
PPS 41مجموعۀ امکان تولید : تمامی ترکیب هاي ممکن ازورودي ها وخروجی هارا مجموعۀ امکان تولید می نامند. به عنوان درشکل زیر نمایش داده y ویک خروجی x مثال منحنی نمایش تابع تولید که براي یک ورودي شده است. ]6[
2-7-2-1- مدل نسبت BCC
مدل نسبت BCC براي ارزیابی کارایی واحد تحت بررسی(صفر) به صورت زیر است:
ساختار مدل نسبت BCC همانند مدل نسبت CCR است که در تابع هدف مهم در تمامی قیود به صورت کسر یک متغیر آزاد در علامت w افزوده می شود .
2-7-2-2- مدل مضربی BCC ورودی محور 42
مدل مضربی BCC ورودی محور ، از حداکثر کردن صورت کسر و ثابت نگه داشتن مخرج کسر به وجود می آید .
مدل مضربی BCC ورودی محور به صورت زیر است :
همانطور که ملاحظه می شود ، تفاوت این مدل با مدل CCR در وجود متغیر آزاد در علامت w است . علامت متغیر w در این مدل نوع بازده به مقیاس را به صورت زیر تعیین می کند :
الف ) هرگاه w<0 باشد ف نوع بازده به مقیاس ف کاهشی است .
ب ) هرگاه w=0 باشد ، نوع بازده به مقیاس ، ثابت است .
ج ) هرگاه w>0 باشد ، نوع بازده به مقیاس ، افزایشی است .]1[
2-7-2-3- مدل پوششی BCC ورودی محور
مدل پوششی BCC ورودی محور ، به صورت زیر است :
همان گونه که مشاهده می شود محدودیت متناظر با اضافه شدن متغیر آزاد در علامت w در مسأله اولیه ، محدودیت ∑_(j=1)^n▒〖λj=1〗 است . در این مدل ، θ نسبت کاهش ورودي هاي واحد تحت بررسی را براي بهبود کارایی نشان می دهد.
یک واحد دراین مدل کارا است ، اگر وفقط اگر دوشرط زیر براي آن بر قرار باشد:
الف ) 1 = *θ
ب ) تمامی متغیرهاي کمکی مقدار صفر داشته باشند
2-7-2-4- مدل مضربی BCC خروجی محور
مدل مضربی BCC خروجی محور ، به صورت زیر است :
2-7-2-5- مدل پوششی BCC خروجی محور 43
مدل پوششی BCC خروجی محور ، به صورت زیر می باشد :
2-7-3- مدل جمعی ( SBM= Slack Based Model )
مدل هاي ورودي محور درحالی که میزان خروجی ها را در سطح داده شده حفظ می کند، به طور مناسب ودر حد امکان نسبت به کاهش میزان ورودي ها اقدام می نماید. برعکس ، مدل هاي خروجی محور با حفظ میزان ورودي به طور متناسب ، خروجی ها افزایش می دهد
مدل جمعی ، مد لی است که همزمان کاهش ورودي ها وافزایش خروجی ها را مورد توجه قرار می دهد.
انواع این مدل به مدل به صورت جدول در زیر خلاصه شده است :
جدول 2-1- مدل جمعی
دید گاه ورودي محور، خروجی محور وبازده به مقیاس ثابت ومتغیر44
بازده به مقیاس ، ارتباط بین تغییرات ورودي ها وخرجی هاي یک بنگاه، یک سیستم تولیدي یا یک سیستم خدماتی را بیان می کند. به طور واضح تر بازده به مقیاس به این پرسش ، پاسخ می دهد که اگر میزان منابع ومواد اولیۀ یک کارخانه دوبرابر شود میزان تولید یا ستادة آن چند برابر تغییر می کند؟ سه حالت زیرممکن است اتفاق بیفتد:
الف) با دوبرابر شدن میزان منابع ، میزان خروجی نیز دو برابر شود(بازده به مقیاس ثابت)
ب) با دوبرابر شدن میزان منابع ، میزان خروجی کمتر ازدوبرابر شود ( بازده به مقیاس کاهشی )
ج) با دوبرابر شدن میزان منابع ، میزان خروجی بیشتر ازدوبرابر شود( بازده به مقیاس افزایشی )
2-8- رتبه بندي45 واحد هاي کارا
همان گونه که قبلا بیان شد، درتحلیل پوششی داده ها، واحد هاي تحت بررسی به دو گروه کارا وناکارا تقسیم می شوند. واحد هاي کارا واحد هایی هستند که امتیاز کارایی آن ها برابر با یک است. واحد هاي ناکارا با کسب امتیاز کارایی قابل رتبه بندي هستند. اما واحد هاي کارا ، چون همگی داراي امتیاز یک می باشند، با استفاده از مدل هاي کلاسیک تحلیل پوششی داده ها قابل رتبه بندي نیستند. بدیهی است که رتبه بندي واحد هاي کارا به جهت تعیین کارا ترین واحد ها ، اهمیت زیادي دارد. لذا روش هاي زیر به منظور رتبه بندي این واحد ها ارایه شده است.
2-9- روش اندرسون – پیترسون 46
درسال 1993 ، اندرسون وپترسون ، روشی را براي رتبه بندي واحد هاي کارا پیشنهاد کردند که تعیین کاراترین واحد را از میان واحد هاي کارا میسر می سازد. بااین روش امتیاز واحد هاي کارا می تواند ازیک بیشتر شود. به این ترتیب ، واحد هاي کارا نیز می توانند مانند واحد هاي ناکرا رتبه بندي شوند. رتبه بندي واحد هاي کارا به صورت زیر انجام می شود.
گام 1 : مدل مضربی ( یا پوششی ) CCR را براي واحد هاي تحت بررسی حل کنید تا واحد هاي کارا و غیر کارا مشخص شوند .
در صورتی که واحد تحت ارزیابی واحد k باشد ، مدل مضربی آن به صورت زیر است :
و مدل پوششی آن به صورت زیر است :
توجه : در مدل BCC ، محدودیت ∑_(j=1)^n▒〖λj=1〗 به مجموعه محدودیت های فوق اضافه می شود .
گام 2 : فقط واحد هاي کارایی را درنظر بگیرید که امتیاز آن ها درقدم اول معادل یک شده وازمجموعۀ محدودیت قدم اول، محدودیت مربوط به آن واحد را از مدل مضربی متناظر به این محدودیت را از مدل پوششی حذف ودوباره مدل را حل کنید.
در حالتی که واحد k ، واحدی کارا باشد ، در این گام ، در مدل مضربی محدودیت شماره ی 3 به صورت زیر خواهد بود :
ودر مدل پوششی محدودیت هاي 5 و 6 به صورت زیر در می آیند:
از آن جا که درگام 2 محدودیت مربوط به واحد تحت بررسی که حد بالاي آن عدد 1 است ، حذف می شود، مقدار کارایی می تواند بیش از 1 شود. بدین ترتیب، واحدهاي کارا با امتیاز هایی بالاتر از یک رتبه بندي می شوند. ]2[
2-10- شبکه های عصبی مصنوعی ( ANNs ) 47
2-10-1- مقدمه
در سالیان اخیر شاهد حرکتی مستمر از تحقیقات صرفاٌ تئوری به تحقیقات کاربردی علی الخصوص در پردازش اطلاعات برای مسائلی که یا برای آن ها راه حلی موجود نیست و یا به راحتی قابل حل نیستند ، بوده ایم . با عنایت به این حقیقت ، علاقه فزاینده ای در توسعه تئوریک سیستم های دینامیکی هوشمند مدل – آزاد که مبتنی بر داده های تجربی هستند ، ایجاد شده است . ” شبکه های عصبی مصنوعی ” جزء این دسته از سیستم های دینامیکی قرار دارند که با پردازش روی داده ها تجربی دانش یا قانون نهفته در ورای داده ها را به ساختار شبکه منتقل می کنند . به همین خاطر به این سیستم ها هوشمند گویند چرا که براساس محاسبات روی داده ها عددی یا مثال ها قوانین کلی را فرا می گیرند . این سیستم های مبتنی بر هوش محاسباتی سعی در مدل سازی ساختار نرو – سیناپتیکی مغز بشر دارند .
پیاده سازی ویژگی های شگفت انگیز مغز در یک سیستم مصنوعی



قیمت: تومان

دسته بندی : پایان نامه ها

دیدگاهتان را بنویسید