در ریاضیات ، تابع رابطه‌ای است که رابطه بین اعضای یک مجموعه را با اعضایی از مجموعه‌ای دیگر (شاید یک عضو از مجموعه) را بیان می‌کند. نظریه درباره تابع یک پایه اساسی برای خیلی از شاخه‌های ریاضی به حساب می‌آید. مفاهیم تابع ، نگاشت و تبدیل معمولاً مفاهیم مشابه‌ای هستند. عملکرد ها معمولاً دو به دو بین اعضای تابع وارد عمل می‌شوند.
تعریف تابع
در ریاضیات تابع عملکردی است که برای هر ورودی داده شده یک خروجی منحصر بفرد تولید می‌کند معکوس این مطلب را در تعریف تابع بکار نمی‌برند. یعنی در واقع یک تابع می‌تواند برای چند ورودی متمایز خروجیهای یکسان را نیز تولید کند. برای مثال با فرض y=x2 با ورودیهای 5- و 5 خروجی یکسان 25 را خواهیم داشت. در بیان ریاضی تابع رابطه‌ای است که در آن عنصر اول به عنوان ورودی و عنصر دوم به عنوان خروجی تابع جفت شده است.
به عنوان مثال تابع f(x)=x2 بیان می‌کند که ارزش تابع برابر است با مربع هر عددی مانند x

در واقع در ریاضیات رابطه را مجموعه جفتهای مراتب معرفی می‌کنند. با این شرط که هرگاه دو زوج با مولفه‌های اول یکسان در این رابطه موجود باشند آنگاه مولفه‌های دوم آنها نیز یکسان باشد. همچنین در این تعریف خروجی تابع را به عنوان مقدار تابع در آن نقطه می‌نامند. مفهوم تابع اساسی اکثر شاخه‌های ریاضی و علوم محاسباتی می‌باشد. همچنین در حالت کلی لزومی ندارد که ما بتوانیم فرم صریح یک تابع را به صورت جبری آلوگرافیکی و یا هر صورت دیگر نشان دهیم.
فقط کافیست این مطلب را بدانیم که برای هر ورودی تنها یک خروجی ایجاد می‌شود در چنین حالتی تابع را می‌توان به عنوان یک جعبه سیاه در نظر گرفت که برای هر ورودی یک خروجی تولید می‌کند. همچنین لزومی ندارد که ورودی یک تابع ، عدد و یا مجموعه باشد. یعنی ورودی تابع را می‌توان هر چیزی دلخواه در نظر گرفت البته با توجه به تعریف تابع و این مطلبی است که ریاضیدانان در همه جا از آن بهره می‌برند.
تاریخچه تابع
نظریه مدرن توابع ریاضی بوسیله ریاضیدان بزرگ لایب نیتر مطرح شد همچنین نمایش تابع بوسیله نمادهای (y=f(x توسط لئونارد اویلر در قرن 18 اختراع گردید، ولی نظریه ابتدایی توابع به عنوان عملکرهایی که برای هر ورودی یک خروجی تولید کند توسط جوزف فوریه بیان شد. برای مثال در آن زمان فوریه ثابت کرد که هر تابع ریاضی سری فوریه دارد.
چیزی که ریاضیدانان ما قبل اوبه چنین موردی دست نیافته بودند، البته موضوع مهمی که قابل ذکر است آنست که نظریه توابع تا قبل از بوجود آمدن نظریه مجموعه‌ها در قرن 19 پایه و اساس محکمی نداشت. بیان یک تابع اغلب برای مبتدی‌ها با کمی ابهام همراه است، مثلا برای توابع کلمه x را به عنوان ورودی و y را به عنوان خروجی در نظر می‌گیرند ولی در بعضی جاها y,x را عوض می‌کنند.
ورودی تابع
ورودی یک تابع را اغلب بوسیله x نمایش می‌دهند. ولی زمانی که ورودی تابع اعداد صحیح باشد. آنرا با x اگر زمان باشد آنرا با t ، و اگر عدد مختلط باشد آنرا با z نمایش می‌دهند. البته اینها مباحثی هستند که ریاضیدانان برای فهم اینکه تابع بر چه نوع اشیایی اثر می‌کند بکار می‌رود. واژه قدیمی آرگومان قبلا به جای ورودی بکار می‌رفت. همچنین خروجی یک تابع را اغلب با y نمایش می‌دهند در بیشتر موارد به جای f(x) , y گفته می‌شود. به جای خروجی تابع نیز کلمه مقدار تابع بکار می‌رود. خروجی تابع اغلب با y نمایش داده می‌شود. ولی به عنوان مثال زمانی که ورودی تابع اعداد مختلط باشد، خروجی آنرا با “W” نمایش می‌دهیم. (W = f(z
تعریف روی مجموعه‌ها
یک تابع رابطه‌ای منحصر به فرد است که یک عضو از مجموعه‌ای را با اعضای مجموعه‌ای دیگر مرتبط می‌کند. تمام روابط موجود بین دو مجموعه نمی‌تواند یک تابع باشد برای روشن شدن موضوع ، مثالهایی در زیر ذکر می‌کنیم:

این رابطه یک تابع نیست چون در آن عنصر 3، با دو عنصر ارتباط دارد. که این با تعریف تابع متناقص است چون برای یک عنصر از مجموعه، دو عنصر در مجموعه موجود است

این رابطه یک تابع یک به یک است. چون به ازای هر x یک y وجود دارد.
تعریف ساخت یافته تابع
بطور ساخت یافته یک تابع از مجموعه x به مجموعه y بصورت f:x→y نوشته می‌شود و به صورت سه تایی مرتب ( (x,y,G(f) نمایش داده می‌شود. بطوری که (G(f زیر مجموعه‌ای از حاصلضرب کارتزین xy می‌باشد. با این شرط که به ازای هر x در X یک Y متعلق به Y نسبت داد شود. با این شرط زوج مرتب (x,y) را در داخل (G(f می‌پذیریم. در این حالت نیز X را به عنوان دامنه f و y را به عنوان برد fو (G(f را به عنوان نمودار و یا گراف تابع F در نظر می‌گیرند.
خواص توابع
توابع می‌توانند:
زوج یا فرد باشند.
پیوسته یا ناپیوسته باشند.
حقیقی یا مختلط باشند.
اسکالر یا برداری باشند.
توابع چند متغیره
یک تابع ممکن است بیشتر از یک متغیر داشته باشد برای مثال

یک تابع از f است که دارای سه پارامتر x,y,z است که یک ارزش را برای تابع تولید می‌کنند. از توابع چند متغیره می‌توان به قانون جاذبه نیوتن اشاره کرد که در آن دو جرم با متغیر

و

و نیز یک متغیر برای فاصله هر جرم به نام

در آن وجود دارد.

مفهوم تابع
مفهوم تایع یکی از مهم ترین مفاهیم علم ریاضی بوده و به همان اندازه در ریاضی اهمیت دارد که مفهوم مجموعه دارد. اغلب، می گویند تابع، کمیت متغیری است که از کمیت متغیر دیگر تبعیت می کند. برای توزیع “معمولی”، مانند:
Y=sinx ,y=x2 , y=a+bx والی آخر، این تعریف کاملا مناسب می باشد. ممکن است اگر توابع دیگری، مانند: y=sin2x+cos2x را در نظر بگیریم، می بینیمی که مقادیر آن تابعه دیگر تغییر نمی کند و بنابراین دیگر کمیت متغیری که از کمیت x تبعیت کند، وجود نداد. ! تعریف تایع: تناظری که به هر عنصر x از یک مجموعه x فقط و فقط یک عنصر y از یک مجموعه y رانسبت را دهد، تایع گویند. توابع را با حروف f یا حروف کوچک خطی لاتین نشان می دهیم.
مفهوم تابع از دیدگاه دیگری
از طرفی، تحت عنوان کمیت “چیزهایی” را در نظر می گیرند که آنها همه با هم قابل مقایسه باشند. یعنی “چیزهایی که” بین آن ها روابط “بیشتر” و “کم تر” و.جود دارد.
در صورتی که در ریاضیات، توابعی نیز مطالعه می شود که برای آنها این روابط تعیین نشده است، مثلا به عنوان مثال از اعداد کمپلکس (مختلط) یا به طور کلی از عناصر یک مجموعه دلخواه می توان اسم برد. توجه دقیق نشان می دهد که در مفهوم تابع وابستگی تغییرات به تغییرات متغیر مستقل آنم اندازه مهم نیست که تناظر بین مقادیر متغیر مستقل و مقادیر تابع مهم می باشد. به خصوص اگر به خاطر بیاوریم که تمامی اطلاعات راجع به تابع، می تواند از بیان گرافیکی آن استخراج گردد، و در نتیجه نباید فرض بین بیان گرافیکی تابع و خود تابع قائل شده و از طرفی
رافیک تابع مجموعه نقاطی است که هر یک از آن ها با دو مختصات y,x یعنی با (x,y) مشخص میگرند. بدین ترتیب به نظر می رسد که در تعریف تابع، مناسب است از آن خصوصیات مجموعه زوج های مرتب استفاده گردد که ویژه گرافیک تابع باشند.
قلمرو و برد تابع:
مجموعه x را قلمرو تابع و مجموعه y را برد تابع f می نامند. تابعf را از مجموعه x به مجموعه y را معمولا به صورت f:x→y y=f(x) نشان می دهند.
مثال هایی از تابع:
1) تبدیل درجه فارنهایت به سانتیگراد را در نظر می گیریم برای هر عدد حقیقی x، درجه فارنهایت معادل است با: درجه سانتیگراد. فرض می کنیم y,x هر دو عدد مجموعه اعداد حقیقی باشند، در نتیجه این عمل، به هر عنصر x از مجموعه Xعنصر یگانه f(x) از مجموعه y را نظیر می کند. اگر داشته باشیم: پس نتیجه می گیریم برای هر مقدار x یک مقدار x از منحصر بفردی y موجود است. f(32)=0 f(68)= 0 f(212)=0 مفهوم تابع برای سه تایی مرتب: اگر در نظر بگیریم که خود متناظر به توسعه 3- تایی مرتب مجموعه هایی است که9 جزو اول آن زیر مجموعه از حاصل ضرب مستقیم جز دوم و سوم آن می باشد و بین عناصر این حاصل ضرب زوج هایی که اجزا اول آنها یکسان و اجزا دوم آن ها متفاوت باشند. وجود ندارد، یعنی اگر (x,z),(x,y) عناصر حاصلضرب مستقیم باشند، آنگاه y=z خواهد بود. بنابراین طبق تعریف: 3- تایی (f,x,y) را تابع گویند، هر گاه: (1) باشد. (2) F زوج هایی نداشته باشد که اجزا اول ان ها یکسان و اجزا دوم آن ها متقارن باشند.
گراف تابع:
در تابع f:X→Y مجموعه تمامیزوج هائی که اجزای اول آن ها را عناصر مجموعه X و اجزای دوم آن ها را تصویر عناصر مجموعه X تشکیل می دهند، گراف تابع خواهد بود.
مفاهیم مربوط به تابع:
برای توابع مفاهیمی مانند “گراف تابع”، “ناحیه مبدا تابع”، “ناحیه تعریف تابع”، “ناحیه مقادیر تابع” ظاهر می شود چون برای تابع، ناحیه تعریف با ناحیه مبدا منطبق می شود، بدین جهت برای تابع فقط ناحیه تعریف را به تنهایی به کار می برند. تابه f را با ناحیه تعریف x ناحیه مقصد y تابعی را “نوع x→y” می نامند.
تعبیر هندسی تابع:
f تابع است اگر خطی موازی محور y ها رسم کنیم منحنی تابع را فقط و فقط در یک نقطه قطع کند. یعنی به ازای یک y فقط و فقط یک x داشته باشیم.
برای توابع نیز مانند مجموعه‌ها ، یا خود تناظرها می‌توان عملیات جبری را تعریف نمود که باید تابع مورد نظر ، تابع حقیقی باشد. منظور از یک تابع با مقدار حقیقی روی مجموعه X، یا به طور خلاصه ، یک تابع حقیقی روی مجموعه X تابعی است مانند f: X→R از مجموعه X به مجموعه اعداد حقیقی، تابع مختلط نیز به طریق مشابهی تعریف می‌شود.
مجموعه دلخواه X را در نظر می‌گیریم؛ فرض می‌کنیم

مجموعه کلیه توابع حقیقی روی مجموعه X باشد. برای این توابع حقیقی ، اعمال جمع و ضرب را نظیر اعمال جمع و ضرب در اعداد حقیقی می‌‌توان تعریف نمود.
تعریف جمع دو تابع
حاصل جمع دو تایی حقیقی f: X→R و g: X→R برابر است با تابع حقیقی f+g: X→R به طوری که برای هر

، مقدار x تحت تابع f+g مساوی است با حاصل جمع دو عدد حقیقی

و

به عبارت دیگر ، برای هر

داریم:

=

+

تعریف ضرب دو تابع
حاصل‌ضرب دو تابع حقیقی f: X→R و g: X→R عبارت است از تابع حقیقی fg: X→R به طوری که برای هر

مقدار x تحت تابع fg برابر است با حاصل‌ضرب دو عدد حقیقی

و

. به عبارت دیگر، برای هر

داریم:

=

x

هرگاه تعداد عناصر مجموعه X باپایان باشد، با جمع و ضرب عناصر متناظر در جدول تناظر توابع g , f ، به آسانی می‌توان جدول تناظر توابع f+g و fg را تشکیل داد.
ویژگی‌های مهم حاصل‌جمع تابعی و حاصل‌ضرب تابعی
حاصل‌جمع و حاصل‌ضرب توابع حقیقی را به ترتیب حاصل‌جمع تابعی و حاصل‌ضرب تابعی می‌نامیم. چون حاصل‌جمع و حاصل‌ضرب توابع حقیقی براساس حاصل‌جمع و حاصل‌ضرب اعداد حقیقی تعریف شدند، به سهولت خواص و ویژگیهای زیر را از اعداد حقیقی به ارث می‌برند.
حاصل‌جمع تابعی و حاصل‌ضرب تابعی توابع حقیقی دارای ویژگیهای زیر می‌باشند:
خاصیت جابجایی: برای دو تابع حقیقی g ,f روی مجموعه X داریم:
f+g=g+f
fg=gf
خاصیت شرکت پذیری: برای سه تابع f، g و h روی مجموعه X داریم:
خاصیت پخش پذیری: برای سه تابع f، g و h روی مجموعه X داریم:

=

+

حاصل‌ضرب تابع حقیقی در یک عدد حقیقی (حاصل ضرب اسکالر)
حاصل‌ضرب عدد حقیقی C و تابع حقیقی f: X→R عبارت است از تابع حقیقی Cf: X→R به طوری که برای هر

مقدار تابع برابر است با حاصل‌ضرب دو عدد حقیقی C و

خواص حاصل‌ضرب اسکالر
ویژگیهای مهم حاصل‌ضرب عددی توابع حقیقی عبارتند از:

=af+ag

=af+bf

=

=

If=f که در روابط بالا b , a اعداد حقیقی دلخواه و g , f توابع حقیقی دلخواهی روی مجموعه X می‌باشند.
تفاضل دو تابع حقیقی
تفاضل دو تابع حقیقی f: X→R و g: X→R را می‌توان بر حسب حاصل‌ضرب عددی و حاصل‌جمع تابعی به وسیله رابطه f-g=f+(-1)g یا مستقیما، برای هر به وسیله: =- تعریف نمود. تفاضل f-g تابعی حقیقی روی مجموعه X می‌باشد.
خارج قسمت دو تابع حقیقی
خارج قسمت تابع حقیقی f: X→R بر تابع حقیقی g: X→R را می‌توان برای هر به صورت تعریف نمود. باید توجه داشت که تابع خارج قسمت (f/g) وقتی معین یا تعریف شده است که برای هر داشته باشیم g(x)≠0. بنابراین خارج قسمت f/g تابعی حقیقی روی مجموعه X می‌‌باشد.
توانهای صحیح تابع حقیقی
توانهای صحیح تابع حقیقی f: X→R یا به عبارت دیگر fn به این صورت تعریف می‌شود. هرگاه n>0 ، آنگاه fn ، تابع حقیقی بر روی مجموعه X است. که برای هر با ضابطه تعریف می‌شود. اگر n≤0، آنگاه برای هر باید داشته باشیم ، در این صورت ، fn برای هر به صورت تعریف می‌شود. بنابراین، برابر تابع ثابت 1 روی مجموعه X خواهد بود.
خواص توان‌های صحیح تابع
خواص توان‌های صحیح حقیقی f: X→R، مستقیما از ویژگیهای متناظر اعداد حقیقی نتیجه می‌شود:
تعریف دامنه
برای توابع جبری که ساختیم باید دامنه تعریف کنیم. دامنه توابع در زیر آمده است:



قیمت: تومان


دیدگاهتان را بنویسید