رادیواکتیو
تاریخچه اکتشاف
در اواخر قرن 19 ، “هانری بکرل” دانشمند فیزیکدان فرانسوی ، مشاهده کرد که ترکیبات اورانیوم از خود اشعه ای صادر می‌کنند که قادر است مانند اشعه خورشید ، صفحات عکاسی را متاثر سازند و رد پای خود را بر روی فیلم عکاسی بگذارند، اما بر خلاف نور خورشید این اشعه حتی از کاغذ سیاه عبور کرده و بر صفحه اثر می‌گذارد.
سیر تحولی و رشد
بعدها تعداد زیادی از دانشمندان ، کار بکرل را دنبال کردند. “ماری کوری” و شوهرش “پیری کوری” ، ثمربخش‌ترین آزمایشات را در این زمینه انجام دادند. این دو دانشمند از اول نشان دادند که اوانیوم و توریوم قادر به صدور اشعه ای هستند که بکرل برای اولین بار کشف نمود.
دستگاه پیر کوری
این اشعه در حین عبور از هوا آنرا یونیزه می کند و آنرا هادی الکتریسته می‌نماید. پیر کوری برای کشف این اشعه از خاصیت اخیر استفاده نمود و دستگاه مخصوصی را ساخت. دستگاه پیر کوری از دو صفحه فلزی موازی هم تشکیل یافته است که یکی از صفحات به قطب مثبت یک پیل الکتریکی و دیگری به قطب منفی همان پیل وصل شده است.
اگر جسمی که اشعه را ساطع می‌کند، روی صفحه اول قرار گیرد، هوای اطراف آن هادی الکتریسته شده و مدار مسدود می‌شود و عقربه گالوانومتر بیشتر منحرف می‌گردد. هر چه این جسم فعالتر باشد، یونیزاسیون هوا بیشتر صورت گرفته و عقربه گالوانومتر بیشتر منحرف می‌شود. ماری کوری ثابت کرد که شدت تشعشع با مقدار اورانیوم موجود در جسم متناسب است. بعدها متوجه شدند که فعالیت تشعشعی پیچ بلند که فقط محتوی مقدار ناچیزی اورانیوم است، به مراتب بیشتر از اورانیوم خالص است. بنابر این پی بردند که در این سنگ باید ماده ای فعالتر از اورانیوم نیز وجود داشته باشد.
پارامترهای مهم دخیل در میزان تشعشع مواد رادیو اکتیو
ماری و پیر کوری به تحقیق درباره سنگ پیچ بلند پرداختند که فعالتر از اورانیوم خالص بود که پس از دو سال کار مداوم توانستند در سنگ معدن اورانیوم ، دو نوع اتم جدید یعنی رادیوم (Radium) و پلونیوم (Polonium) را کشف کنند. عنصر اولی را بعلت تشعشعش ، رادیوم و خود این اشعه را رادیواکتیو نام نهادند. عنصر دومی به افتخار میهن اصلی ماری کوری ، لهستان ، پلونیوم نامیده شد
نکته مهم و قابل توجه اینست که درجه حرارت و فشار و عوامل شیمیایی هیچگونه تاثیری روی میزان صدور اشعه رادیو اکتیو توسط اجسام ندارند و این پارامترها روشن می‌سازد که خاصیت رادیو اکتیو فقط مربوط به تغییرات هسته درون اتم می‌باشد. تشعشع صادره از یک قطعه رادیوم در کلیه جهات به خط مستقیم صورت می‌گیرد. سرب ، می‌تواند جاذب (حاجب) خوبی برای این پرتوهامی باشد، از این رو هر گاه در ته یک محفظه سربی که سوراخی در بالای آن تعبیه شده باشد، یک قطعه رادیوم گذاشته شود، اشعه گذرنده از سوراخ بر روی صفحه حساس عکاسی که در کاغذ سیاه پیچیده شده و مقابل سوراخ قراردارد، به اندازه لکه کوچکی اثر می‌گذارد و اشعه صادره در سایر جهات توسط سرب متوقف خواهد شد.

ماری کوری ، کاشف رادیوم
تقسیم بندی پرتوهای تشعشعی
با کمک صفحه عکاسی به‌سادگی می‌توان مشاهده کرد که این اشعه پس از عبور از بین دو صفحه فلزی که دارای بار الکتریکی زیادی هستند یا از بین دو قطب یک آهنربای قوی به سه شاخه تقسیم می‌شوند و در روی صفحه عکاسی به جای یک لکه ، سه لکه دیده خواهد شد، یکی در وسط دیگری خیلی نزدیک به آن و سومی در طرف دیگر قرار داد. این سه نوع اشعه را آلفا ، بتا و گاما نامیده‌اند.
اشعه ای که کمی به طرف صفحه منفی منحرف شده دارای بار مثبت است و به نام ذره آلفا نام گذاری شده است.
اشعه ای که کاملاً به سمت صفحه مثبت منحرف شده ، دارای بار منفی است و به نام ذره بتا نام گذاری شده است.
اشعه وسطی که بدون انحراف عبور کرده است، از نظر الکتریکی خنثی است و به نام اشعه گاما نام گذاری شده است.
کشف مواد رادیو اکتیو مصنوعی
کیمیاگران قرون وسطی برای تبدیل فلزات معمولی به طلا کوشش فراوانی کردند، اما تلاش همه آنها بی‌نتیجه ماند. در سال 1919 “رادرفورد” به این فکر افتاد که از انرژی تشعشعی اجسام رادیو اکتیو ( انرژی هسته‌ای ) مثلا ذره آلفا برای خورد کردن ( شکستن ) هسته اتم و تشکیل هسته جدید استفاده کند. چون این ذرات سرعت زیادی دارند و می‌توانند به‌عنوان گلوله‌های توپخانه کوچکی بمنظور خرد کردن هسته اتم و تشکیل هسته جدید بکار روند.
اولین کشف ، تبدیل ازت به اکسیژن
رادرفورد یک منبع تشعشعی رادیو اکتیو را در یک لوله پُر از گاز ازت قرار داده و ملاحظه نمود که ذرات آلفا که بر اتم‌های ازت برخورد می‌کنند در هسته آنها وارد شده و آنها را به دو پاره تقسیم می‌نمایند ( یک هسته اتم اکسیژن سنگین 17 و یک هسته اتم هیدروژن یعنی پروتون ) بدین ترتیب برای اولین مرتبه تغییر و تبدیل مصنوعی عناصر به حقیقت پیوست بعدها موفق شدند هسته اتم‌های عناصر ساده دیگر را نیز بشکنند.
کشف پوزیترون
“ایرن ژولیوکوری” (Irene Joliot Curie) و شوهرش “فردریک ژولیوکوری” (Frederic Joliot Curie) در سال 1934 هنگام مطالعه بمباران عناصر ساده مختلف بوسیله ذره آلفا ، به کشف بزرگی نائل شدند. آنها مشاهده نمودند وقتیکه آلومینیوم با ذرات آلفا بمباران می‌شود، ذرات پوزیترون گسیل می‌کند. جرم این ذرات مساوی جرم الکترون بوده و دارای بار مثبت هستند و مقدار این بار از لحاظ قدر مطلق مساوی با بار الکترون می‌باشد.
صدور پوزیترون بلافاصله پس از بمباران شروع می‌شود، اما کم‌کم ضعیف شده و بالاخره کاملا قطع می‌گردد. بدین ترتیب این زن و شوهر پی بردند که فعل و انفعالات ذرات آلفا با هسته آلومینیوم سبب تولید یک عنصر رادیو اکتیو مصنوعی شده است که نیم عمر این عنصر رادیو اکتیو 3.25 دقیقه است.
واکنشهای هسته‌ای مصنوعی
فسفر حاصل از واکنش آلومینیوم 27 با هلیوم 4 ، یک پوزیترون ساتع می‌کند و تجزیه می‌گردد و به هسته پایدار سیلیبوم تبدیل می‌شود. این پدیده را رادیو اکتیویته مصنوعی و اجسام ناپایداری را که بدین ترتیب بدست می‌آید، عناصر رادیو اکتیو مصنوعی نامیده‌اند.
خواص اشعه راديواكتيو
عناصر راديواكتيو معمولا سه نوع ذره يا اشعه از خود صادر مي‌كنند كه شامل ذره آلفا ، ذره بتا و اشعه گاما است. با قرار دادن اشعه راديواكتيو تحت تاثير ميدان مغناطيسي متوجه شده‌اند كه ذره آلفا داراي بار مثبت ، بتا داراي بار منفي و اشعه گاما بدون بار است.
خواص ذره آلفا
جنس ذره آلفا ، هسته اتم هليوم است كه از دو نوترون و دو پروتون تشكيل يافته است. جرم آن حدود 4 برابر جرم پروتون و بار الكتريكي آن 2+ و علامت اختصاري آن (4,2)He است. برد ذره آلفا به عنصر مادر ، انرژي اوليه و جنس محيط بستگي دارد. مثلا برد ذره آلفا صادره از راديوم در هوا تقريبا 4.8 سانتيمتر مي‌باشد. ذره آلفا به علت داشتن 2 بار مثبت هنگامي كه از نزديكي يك اتم عبور مي كند، ممكن است تحت تاثير ميدان الكتروستاتيكي خود ، الكترون مدار خارجي آن اتم را خارج سازد و يا به عبارت ديگر اتم را يونيزه كند. همچنين ذره آلفا قادر است محل الكترون را تغيير دهد، يعني الكترون تحت تاثير ميدان الكتريكي ذره آلفا از مدار پايين تري به مدار بالاتر صعود مي‌كند و در نتيجه اتم به حالت برانگيخته در مي‌آيد. قابليت نفوذ ذره آلفا بسيار كم است.
خواص ذره بتا
جنس ذره بتاي منفي ، از جنس الكترون مي‌باشد، بار الكتريكي آن 1- و علامت آن بتاي منفي است. برد ذره بتا در هوا در حدود چند سانتيمتر تا حدود يك متر است. البته برد اين ذره نيز به انرژي اوليه (عنصر مادر) و جنس محيط بستگي دارد. برخلاف ذره آلفا ، ذره بتا از نظر حفاظت يك خطر خارجي محسوب مي‌شود. خاصيت يون سازي اين ذره به مراتب كمتر از ذره آلفا است، يعني بطور متوسط در حدود 100 مرتبه كمتر از ذره آلفا مي‌باشد. ذره بتا مي‌تواند در اتمها ايجاد برانگيختگي كند، ولي اين خاصيت نيز در ذره بتا، به مراتب كمتر از ذره آلفا است. قدرت نفوذ ذره بتا بطور متوسط 100 برابر بيشتر از ذره آلفا است. طيف ذره بتا تك انرژي نيست، بلكه يك طيف پيوسته است كه تمام مقادير انرژي از 0 تا انرژي ماكزيمم را دارا مي‌باشد. اين ذره همان پوزتيرون است كه ضد ماده الكترون مي‌باشد. جرم آن با جرم الكترون برابر بوده و داراي باري مخالف با بار الكترون است و علامت اختصاري آن حرف بتاي مثبت است.
خواص اشعه گاما
جنس اشعه گاما از جنس امواج الكترومغناطيسي مي‌باشد، يعني از جنس نور است. ولي با طول موج بسيار كوتاه كه طول موج آن از 1 تا 0.01 آنگستروم تغيير مي‌كند. جرم آن در مقياس اتمي صفر ، سرعت آن برابر سرعت نور ، بار الكتريكي آن صفر و علامت اختصاري آن حرف گاما مي‌باشد. انرژي اشعه گاما از 10 كيلو الكترون ولت تا 10 مگا الكترون ولت تغيير مي‌كند. برد آنها بسيار زياد است. مثلا در هوا چندين متر است. خاصيت ايجاد يونيزاسيون و برانگيختگي در اشعه گاما نيز وجود دارد. ولي به مراتب كمتر از ذرات آلفا و بتا است. مثلا اگر قدرت يونيزاسيون متوسط اشعه گاما را يك فرض كنيم، قدرت يونيزاسيون متوسط ذره بتا 100 و ذره آلفا 104 خواهد بود. قدرت نفوذ اين اشعه به مراتب بيشتر از ذرات بتا و آلفا است. طيف انرژي اشعه گاما ، همانند ذرات آلفا تك انرژي است. يعني تمام فوتونهاي گاماي حاصل از يك عنصر راديواكتيو داراي انرژي يكساني هستند.



قیمت: تومان


دیدگاهتان را بنویسید